Какой ток пропускает конденсатор. Занимательная радиотехника

Какой ток пропускает конденсатор. Занимательная радиотехника

Типовой конденсатор со схемным обозначением «С» относится к категории наиболее распространённых радиокомпонентов, работающих в цепях как переменного, так и постоянного тока. В первом случае он используется как элемент блокировки и ёмкостной нагрузки, а во втором – в качестве фильтрующего звена выпрямительных цепочек с пульсирующим током. Конденсатор в цепи переменного тока выглядит так, как это изображено на рисунке ниже.

В отличие от другого распространённого радиокомпонента, называемого резистором, конденсатор в цепи переменного тока вносит в неё реактивную составляющую, что приводит к образованию сдвига фаз между приложенной ЭДС и вызванным ею током. Ознакомимся с тем, что такое реактивная составляющая и ёмкостное сопротивление, более подробно.

Включение в цепи синусоидальной ЭДС

Виды включений

Конденсатор в цепи постоянного тока (без переменной составляющей) работать, как известно, не может.

Обратите внимание! Это утверждение не касается сглаживающих фильтров, где протекает пульсирующий ток, а также специальных блокирующих схем.

Совершенно иная картина наблюдается, если рассматривать включение этого элемента в цепи переменного тока, в которой он начинает вести себя более активно и может выполнять сразу несколько функций. В этом случае конденсатор может использоваться в следующих целях:

  • Для блокировки постоянной составляющей, всегда присутствующей в любой электронной схеме;
  • С целью создания сопротивления на пути распространения высокочастотных (ВЧ) компонентов обрабатываемого сигнала;
  • Как ёмкостной нагрузочный элемент, задающий частотные характеристики схемы;
  • В качестве элемента колебательных контуров и специальных фильтров (НЧ и ВЧ).

Из всего перечисленного сразу видно, что в подавляющем большинстве случаев конденсатор в цепи переменного тока используется как частотно-зависимый элемент, способный оказывать определённое влияние на протекающие по ней сигналы.

Простейший тип включения

Происходящие при таком включении процессы приведены на размещённом ниже рисунке.

Они могут быть описаны путём введения понятия гармонической (синусоидальной) ЭДС, выражаемой как U = Uo cos ω t , и выглядят следующим образом:

  • При нарастании переменной ЭДС конденсатор заряжается протекающим по нему электрическим током I, максимальным в начальный момент времени. По мере заряда ёмкости величина зарядного тока постепенно уменьшается и полностью обнуляется в тот момент, когда ЭДС достигает своего максимума;

Важно! Такое разнонаправленное изменение тока и напряжения приводит к образованию между ними характерного для этого элемента сдвига фаз на 90 градусов.

  • На этом первая четверть периодического колебания заканчивается;
  • Далее синусоидальная ЭДС постепенно убывает, вследствие чего конденсатор начинает разряжаться, и в это время в цепи протекает нарастающий по амплитуде ток. При этом наблюдается то же отставание его по фазе, что было в первой четверти периода;
  • По завершении этой стадии конденсатор полностью разряжается (при этом ЭДС равна нулю), а ток в цепи достигает максимума;
  • По мере нарастания обратного (разрядного) тока ёмкость перезаряжается, вследствие чего ток постепенно снижается до нуля, а ЭДС достигает своего пикового значения (то есть весь процесс возвращается в исходную точку).

Далее все описанные процессы повторяются с периодичностью, задаваемой частотой внешней ЭДС. Сдвиг по фазе между током и ЭДС может рассматриваться как некое сопротивление изменению напряжения на конденсаторе (отставание его от токовых колебаний).

Емкостное сопротивление

Понятие ёмкости

При исследовании процессов, протекающих в цепях с подключённым в них конденсатором, обнаружено, что время заряда и разряда для различных образцов этого элемента существенно отличается одно от другого. На основании данного факта было введено понятие ёмкости, определяемое как способность конденсатора накапливать заряд под воздействием заданного напряжения:

После этого изменение заряда на его обкладках со временем можно представить как:

Но поскольку Q = CU , то путём несложных вычислений получаем:

I = CxdU/dt = ω C Uo cos ω t = Io sin(ω t+90),

то есть ток течёт через конденсатор таким образом, что он начинает опережать по фазе напряжение на 90 градусов. Такой же результат получается при использовании других математических подходов к этому электрическому процессу.

Векторное представление

Для большей наглядности в электротехнике используется векторное представление рассмотренных процессов, а для количественной оценки замедления реакции вводится понятие ёмкостного сопротивления (смотрите фото ниже).

Из векторной диаграммы также видно, что ток в цепи конденсатора опережает по фазе напряжение на 90 градусов.

Дополнительная информация. При изучении «поведения» катушки в цепи синусоидального тока было обнаружено, что он в ней, напротив, отстаёт по фазе от напряжения.

И в том, и в другом случае наблюдается различие в фазных характеристиках процессов, свидетельствующих о реактивном характере нагрузки в цепи переменной ЭДС.

Упуская из внимания сложные для описания дифференциальные вычисления, для представления сопротивления ёмкостной нагрузки получим:

Из неё следует, что создаваемое конденсатором сопротивление обратно пропорционально частоте переменного сигнала и ёмкости установленного в цепь элемента. Указанная зависимость позволяет строить на основе конденсатора такие частотно-зависимые схемы, как:

  • Интегрирующие и дифференцирующие цепочки (совместно с пассивным резистором);
  • НЧ и ВЧ фильтрующие элементы;
  • Реактивные цепи, используемые для улучшения нагрузочных характеристик силового оборудования;
  • Резонансные контуры последовательного и параллельного типа.

В первом случае посредством ёмкости удаётся произвольно изменять форму прямоугольных импульсов, увеличивая их длительность (интегрирование) или сокращая её (дифференцирование).

Фильтрующие цепочки и резонансные контура широко используются в линейных схемах самого различного класса (усилители, преобразователи, генераторы и подобные им устройства).

График ёмкостного сопротивления

Доказано, что ток через конденсатор протекает только под воздействием гармонически изменяющегося напряжения. При этом сила тока в цепочке определяется ёмкостью данного элемента, так что чем больше ёмкость конденсатора, тем он значительнее по величине.

Но можно проследить и обратную зависимость, в соответствие с которой сопротивление конденсатора возрастает с понижением частотного параметра. В качестве примера рассмотрим график, приведённый на рисунке ниже.

Из приведённой выше зависимости можно сделать следующие важные выводы:

  • Для тока постоянной величины (частота = 0) Хс равно бесконечности, что означает невозможность его протекания в ней;
  • При очень высоких частотах сопротивление этого элемента стремится к нулю;
  • При прочих равных условиях оно определяется ёмкостью установленного в цепи конденсатора.

Определённый интерес представляют вопросы распределения электрической энергии в цепях переменного тока с включённым в них конденсатором.

Работа (мощность) в ёмкостной нагрузке

Подобно случаю с индуктивностью, при исследовании «поведения» конденсатора в цепях переменной ЭДС обнаружено, что расхода мощности в них из-за сдвига фаз U и I не наблюдается. Последнее объясняется тем, что электрическая энергия на начальном этапе процесса (при заряде) запасается между обкладками конденсатора, а на второй его стадии – отдается назад в источник (смотрите рисунок ниже).

Вследствие этого емкостное сопротивление относится к категории реактивных, или безваттных, нагрузок. Однако такой вывод можно считать чисто теоретическим, поскольку в реальных цепях всегда присутствуют обычные пассивные элементы, обладающие не реактивным, а активным или ваттным сопротивлением. К ним относятся:

  • Сопротивления подводящих проводов;
  • Проводимости диэлектрических зон в конденсаторе;
  • Рассеяние на контактах;
  • Активные сопротивления витков катушек и тому подобное.

В связи с этим в любой реальной электрической цепочке всегда имеются потери активной мощности (её рассеяние), определяемые в каждом случае индивидуально.

Особое внимание следует обратить на внутренние потери, связанные с утечками через диэлектрик и плохим состоянием изоляции между пластинами (обкладками). Обратимся к следующим определениям, учитывающим реальное положение дел. Так, потери, связанные с качественными характеристиками диэлектрика, называются диэлектрическими. Энергетические затраты, относимые на несовершенство находящейся между пластинами изоляции, принято классифицировать как потери из-за утечек в конденсаторном элементе.

В завершении этого обзора интересно проследить за одной аналогией, представляющей процессы, происходящие в конденсаторной цепи с упругой механической пружиной. И, действительно, пружина, подобно этому элементу, в течение одной части периодического колебания накапливает в себе потенциальную энергию, а во второй фазе – отдает её обратно в кинетической форме. На основании такой аналогии может быть представлена вся картина поведения конденсатора в цепях с переменной ЭДС.

Видео

Details 16 April 2017

Господа, в сегодняшней статье я хотел бы рассмотреть такой интересный вопрос, как конденсатор в цепи переменного тока . Эта тема весьма важна в электричестве, поскольку на практике конденсаторы повсеместно присутствуют в цепях с переменным током и, в связи с этим, весьма полезно иметь четкое представление, по каким законам изменяются в этом случае сигналы. Эти законы мы сегодня и рассмотрим, а в конце решим одну практическую задачу определения тока через конденсатор.

Господа, сейчас для нас наиболее интересным моментом является то, как связаны между собой напряжение на конденсаторе и ток через конденсатор для случая, когда конденсатор находится в цепи переменного сигнала.

Почему сразу переменного? Да просто потому, что конденсатор в цепи постоянного тока ничем не примечателен. Через него течет ток только в первый момент, пока конденсатор разряжен. Потом конденсатор заряжается и все, тока нет (да-да, слышу, уже начали кричать, что заряд конденсатора теоретически длится бесконечно долгое время, да еще у него может быть сопротивление утечки, но пока что мы этим пренебрегаем). Заряженный конденсатор для постоянного тока - это как разрыв цепи . Когда же у нас случай переменного тока - тут все намного интереснее. Оказывается, в этом случае через конденсатор может протекать ток и конденсатор в этом случае как бы эквивалентен резистору с некоторым вполне определенным сопротивлением (если пока забить забыть про всякие там сдвиги фазы, об этом ниже). Нам надо каким-нибудь образом получить связь между током и напряжением на конденсаторе.

Пока мы будем исходить из того, что в цепи переменного тока находится только конденсатор и все. Без каких-либо других компонентов типа резисторов или индуктивностей. Напомню, что в случае, когда у нас в цепи находится исключительно одни только резисторы, подобная задача решается очень просто: ток и напряжения оказываются связанными между собой через закон Ома . Мы про это уже не один раз говорили. Там все очень просто: делим напряжение на сопротивление и получаем ток. А как же быть в случае конденсатора? Ведь конденсатор-то это не резистор. Там совсем иная физика протекания процессов, поэтому вот так вот с наскока не получится просто связать между собой ток и напряжение. Тем не менее, сделать это надо, поэтому давайте попробуем порассуждать.

Сперва давайте вернемся назад. Далеко назад. Даже очень далеко. К самой-самой первой моей статье на этом сайте. Старожилы должно быть помнят, что это была статья про силу тока . Вот в этой самой статье было одно интересное выражение, которое связывало между собой силу тока и заряд, протекающий через сечение проводника. Вот это самое выражение

Кто-нибудь может возразить, что в той статье про силу тока запись была через Δq и Δt - некоторые весьма малые величины заряда и времени, за которое этот заряд проходит через сечение проводника. Однако здесь мы будем применять запись через dq и dt - через дифференциалы. Такое представление нам потребуется в дальнейшем. Если не лезть глубоко в дебри матана, то по сути dq и dt здесь особо ничем не отличаются от Δq и Δt . Безусловно, глубоко сведущие в высшей математике люди могут поспорить с этим утверждением, но да сейчас я не хочу концентрировать внимание на данных вещах.

Итак, выражение для силы тока мы вспомнили. Давайте теперь вспомним, как связаны между собой емкость конденсатора С , заряд q , который он в себе накопил, и напряжение U на конденсаторе, которое при этом образовалось. Ну, мы же помним, что если конденсатор накопил в себе какой-то заряд, то на его обкладках неизбежно возникнет напряжение. Про это все мы тоже говорили раньше, вот в этой вот статье . Нам будет нужна вот эта формула, которая как раз и связывает заряд с напряжением

Давайте-ка выразим из этой формулы заряд конденсатора:

А теперь есть очень большой соблазн подставить это выражение для заряда конденсатора в предыдущую формулу для силы тока. Приглядитесь-ка повнимательнее - у нас ведь тогда окажутся связанными между собой сила тока, емкость конденсатора и напряжение на конденсаторе! Сделаем эту подстановку без промедлений:

Емкость конденсатора у нас является величиной постоянной . Она определяется исключительно самим конденсатором , его внутренним устройством, типом диэлектрика и всем таким прочим. Про все это подробно мы говорили в одной из прошлых статей . Следовательно, емкость С конденсатора, поскольку это константа, можно смело вынести за знак дифференциала (такие вот правила работы с этими самыми дифференциалами). А вот с напряжением U нельзя так поступить! Напряжение на конденсаторе будет изменяться со временем . Почему это происходит? Ответ элементарный: по мере протекания тока на обкладках конденсатора, очевидно, заряд будет изменяться. А изменение заряда непременно приведет к изменению напряжения на конденсаторе. Поэтому напряжение можно рассматривать как некоторую функцию времени и его нельзя выносить из-под дифференциала. Итак, проведя оговоренные выше преобразования, получаем вот такую вот запись:

Господа, спешу вас поздравить - только что мы получили полезнейшее выражение, которое связывает между собой напряжение, приложенное к конденсатору, и ток, который течет через него. Таким образом, если мы знаем закон изменения напряжения, мы легко сможем найти закон изменения тока через конденсатор путем простого нахождения производной.

А как быть в обратном случае? Допустим, нам известен закон изменения тока через конденсатор и мы хотим найти закон изменения напряжения на нем. Читатели, сведущие в математике, наверняка уже догадались, что для решения этой задачи достаточно просто проинтегрировать написанное выше выражение. То есть, результат будет выглядеть как-то так:

По сути оба этих выражений про одно и тоже. Просто первое применяется в случае, когда нам известен закон изменения напряжения на конденсаторе и мы хотим найти закон изменения тока через него, а второе - когда нам известно, каким образом меняется ток через конденсатор и мы хотим найти закон изменения напряжения. Для лучшего запоминания всего этого дела, господа, я приготовил для вас поясняющую картинку. Она изображена на рисунке 1.


Рисунок 1 - Поясняющая картинка

На ней, по сути, в сжатой форме изображены выводы, которые хорошо бы запомнить.

Господа, обратите внимание - полученные выражения справедливы для любого закона изменения тока и напряжения. Здесь не обязательно должен быть синус, косинус, меандр или что-то другое. Если у вас есть какой-то совершенно произвольный, пусть даже совершенно дикий, не описанный ни в какой литературе, закон изменения напряжения U(t) , поданного на конденсатор, вы, путем его дифференцирования можете определить закон изменения тока через конденсатор. И аналогично если вы знаете закон изменения тока через конденсатор I(t) то, найдя интеграл, сможете найти, каким же образом будет меняться напряжение.

Итак, мы выяснили как связать между собой ток и напряжение для абсолютно любых, даже самых безумных вариантов их изменения. Но не менее интересны и некоторые частные случаи. Например, случай успевшего уже нам всем полюбиться синусоидального тока. Давайте теперь разбираться с ним.

Пусть напряжение на конденсаторе емкостью C изменяется по закону синуса вот таким вот образом

Какая физическая величина стоит за каждой буковкой в этом выражении мы подробно разбирали чуть раньше . Как же в таком случае будет меняться ток? Используя уже полученные знания, давайте просто тупо подставим это выражение в нашу общую формулу и найдем производную

Или можно записать вот так

Господа, хочу вам напомнить, что синус ведь только тем и отличается от косинуса, что один сдвинут относительно другого по фазе на 90 градусов. Ну, или, если выражаться на языке математики, то . Не понятно, откуда взялось это выражение? Погуглите формулы приведения . Штука полезная, знать не помешает. А еще лучше, если вы хорошо знакомы с тригонометрическим кругом , на нем все это видно очень наглядно.

Господа, отмечу сразу один момент. В своих статьях я не буду рассказывать про правила нахождения производных и взятия интегралов. Надеюсь, хотя бы общее понимание этих моментов у вас есть. Однако даже если вы не знаете, как это делать, я буду стараться излагать материал таким образом, чтобы суть вещей была понятна и без этих промежуточных выкладок. Итак, сейчас мы получили немаловажный вывод - если напряжение на конденсаторе изменяется по закону синуса, то ток через него будет изменяться по закону косинуса. То есть ток и напряжение на конденсаторе сдвинуты друг относительно друга по фазе на 90 градусов. Кроме того, мы можем относительно легко найти и амплитудное значение тока (это множители, которые стоят перед синусом). Ну то есть тот пик, тот максимум, которого ток достигает. Как видим, оно зависит от емкости C конденсатора, амплитуды приложенного к нему напряжения U m и частоты ω . То есть чем больше приложенное напряжение, чем больше емкость конденсатора и чем больше частота изменения напряжения, тем большей амплитуды достигает ток через конденсатор. Давайте построим график, изобразив на одном поле ток через конденсатор и напряжение на конденсаторе. Пока без конкретных цифр, просто покажем качественный характер. Этот график представлен на рисунке 2 (картинка кликабельна).


Рисунок 2 - Ток через конденсатор и напряжение на конденсаторе

На рисунке 2 синий график - это синусоидальный ток через конденсатор, а красный - синусоидальное напряжение на конденсаторе. По этому рисунку как раз очень хорошо видно, что ток опережает напряжение (пики синусоиды тока находятся левее соответствующих пиков синусоиды напряжения, то есть наступают раньше ).

Давайте теперь проделаем работу наоборот. Пусть нам известен закон изменения тока I(t) через конденсатор емкостью C . И закон этот пусть тоже будет синусоидальным

Давайте определим, как в таком случае будет меняться напряжение на конденсаторе. Воспользуемся нашей общей формулой с интегральчиком:

По абсолютнейшей аналогии с уже написанными выкладками, напряжение можно представить вот таким вот образом

Здесь мы снова воспользовались интересными сведениями из тригонометрии, что . И снова формулы приведения придут вам на помощь, если не понятно, почему получилось именно так.

Какой же вывод мы можем сделать из данных расчетов? А вывод все тот же самый, какой уже был сделан: ток через конденсатор и напряжение на конденсаторе сдвинуты по фазе друг относительно друга на 90 градусов. Более того, они не просто так сдвинуты. Ток опережает напряжение. Почему это так? Какая за этим стоит физика процесса? Давайте разберемся.

Представим, что незаряженный конденсатор мы подсоединили к источнику напряжения. В первый момент никаких зарядов в конденсаторе вообще нет: он же разряжен. А раз нет зарядов, то нет и напряжения. Зато ток есть, он возникает сразу при подсоединении конденсатора к источнику. Замечаете, господа? Напряжения еще нет (оно не успело нарасти), а ток уже есть . И кроме того, в этот самый момент подключения ток в цепи максимален (разряженный конденсатор ведь по сути эквивалентен короткому замыканию цепи). Вот вам и отставание напряжения от тока. По мере протекания тока, на обкладках конденсатора начинает накапливаться заряд, то есть напряжение начинает расти а ток постепенно уменьшаться. И через некоторое время накопится столько заряда на обкладках, что напряжение на конденсаторе сравняется с напряжением источника и ток в цепи совсем прекратится.

Теперь давайте этот самый заряженный конденсатор отцепим от источника и закоротим накоротко. Что получим? А практически то же самое. В самый первый момент ток будет максимален, а напряжение на конденсаторе останется таким же, какое оно и было без изменений. То есть снова ток впереди, а напряжение изменяется вслед за ним. По мере протекания тока напряжение начнет постепенно уменьшаться и когда ток совсем прекратится, оно тоже станет равным нулю.

Для лучшего понимания физики протекающих процессов можно в который раз уже использовать водопроводную аналогию . Представим себе, что заряженный конденсатор - это некоторый бачок, полный воды. У этого бачка есть внизу краник, через который можно спустить воду. Давайте этот краник откроем. Как только мы его откроем, вода потечет сразу же. А давление в бачке будет падать постепенно, по мере того, как вода будет вытекать. То есть, грубо говоря, ручеек воды из краника опережает изменение давления, подобно тому, как ток в конденсаторе опережает изменение напряжения на нем.

Подобные рассуждения можно провести и для синусоидального сигнала, когда ток и напряжения меняются по закону синуса, да и вообще для любого. Суть, надеюсь, понятна.

Давайте проведем небольшой практический расчет переменного тока через конденсатор и построим графики.

Пусть у нас имеется источник синусоидального напряжения, действующее значение равно 220 В , а частота 50 Гц . Ну, то есть все ровно так же, как у нас в розетках. К этому напряжению подключают конденсатор емкостью 1 мкФ . Например, пленочный конденсатор К73-17 , рассчитанный на максимальное напряжение 400 В (а на меньшее напряжение конденсаторы ни в коем случае нельзя подключать в сети 220 В), выпускается с емкостью 1 мкФ. Чтобы вы имели представление, с чем мы имеем дело, на рисунке 3 я разместил фотографию этого зверька (спасибо Diamond за фото )


Рисунок 3 - Ищем ток через этот конденсатор

Требуется определить, какая амплитуда тока будет протекать через этот конденсатор и построить графики тока и напряжения.

Сперва нам надо записать закон изменения напряжения в розетке. Если вы помните, амплитудное значение напряжения в этом случае равно около 311 В. Почему это так, откуда получилось, и как записать закон изменения напряжения в розетке, можно прочитать вот в этой статье . Мы же сразу приведем результат. Итак, напряжение в розетке будет изменяться по закону

Теперь мы можем воспользоваться полученной ранее формулой, которая свяжет напряжение в розетке с током через конденсатор. Выглядеть результат будет так

Мы просто подставили в общую формулу емкость конденсатора, заданную в условии, амплитудное значение напряжения и круговую частоту напряжения сети. В результате после перемножения всех множителей имеем вот такой вот закон изменения тока

Вот так вот, господа. Получается, что амплитудное значение тока через конденсатор чуть меньше 100 мА. Много это или мало? Вопрос нельзя назвать корректным. По меркам промышленной техники, где фигурируют сотни ампер тока, очень мало. Да и для бытовых приборов, где десятки ампер не редкость - тоже. Однако для человека даже такой ток представляет большую опасность! Отсюда следует вывод, что хвататься за такой конденсатор, подключенный к сети 220 В не следует . Однако на этом принципе возможно изготовление так называемых источников питания с гасящим конденсатором. Ну да это тема для отдельной статьи и здесь мы не будем ее затрагивать.

Все это хорошо, но мы чуть не забыли про графики, которые должны построить. Надо срочно исправляться! Итак, они представлены на рисунке 4 и рисунке 5. На рисунке 4 вы можете наблюдать график напряжения в розетке, а на рисунке 5 - закон изменения тока через конденсатор, включенный в такую розетку.


Рисунок 4 - График напряжения в розетке


Рисунок 5 - График тока через конденсатор

Как мы можем видеть из этих рисунков, ток и напряжение сдвинуты на 90 градусов, как и должно быть. И, возможно, у читателя возникла мысль - если через конденсатор течет ток и на нем падает какое-то напряжение, вероятно, на нем должна выделяться и некоторая мощность . Однако спешу предупредить вас - для конденсатора дело обстоит совершенно не так . Если рассматривать идеальный конденсатор, то мощность на нем не будет вообще выделяться, даже при протекании тока и падении на нем напряжения. Почему? Как же так? Об этом - в будущих статьях. А на сегодня все. Спасибо что читали, удачи, и до новых встреч!

Вступайте в нашу

Почему конденсатор не пропускает постоянный ток, но зато пропускает переменный?

  1. Конденсатор не пропускает ток он может только заряжаться и разряжаться
    На постоянном токе конденсатор заряжается 1 раз а дальше становится бесполезным в цепи.
    На пульсирующем токе когда напряжение повышается он заряжается (накапливает в себе электрическую энергию) , а когда напряжение от максимального уровня начинает снижаться он возвращает энергию в сеть стабилизируя при этом напряжение.
    На переменном токе когда напряжение возрастает от 0 к максимуму конденсатор заряжается, когда снижается от максимума до 0 разряжается возвращая энергию обратно в сеть, когда полярность меняется все происходит точно также но с другой полярностью.
  2. Ток течт только до тех пор, пока конденсатор заряжается.
    В цепи постоянного тока конденсатор заряжается сравнительно быстро, после чего ток уменьшается и практически прекращается.
    В цепи переменного тока конденсатор заряжается, затем напряжение меняет полярность, он начинает разряжаться, а потом заряжаться в обратную сторону, и т. д. - ток течт постоянно.
    Ну представьте себе банку, в которую можно налить воду только до тех пор, пока она не заполнится. Если напряжение постоянное, банка заполнится и после этого ток прекратится. А если напряжение переменное - вода в банку заливается - выливается - заливается и т. д.
  3. конденсатор работает как в переменном токе так и в постоянном, т. к. он заряжается на постоянном токе и не может никуда деть ту энергию, для этого в цепь соединяют через ключ обратную ветвь, для смены полярности, чтобы его разрядить и освободить место для новой порции, неа переменном на оборот, кандр заряжается и разряжается за счет перемены полярностей....
  4. спасибо ребята за классную информацию!!!
  5. в чисто физическом плане: конденсатор - есть развыв цепи, т. к. его прокладки не соприкасаются друг с другом, между ними диэлектрик. а как мы знаем диэлектрики не проводят электричесний ток. поэтому постоянный ток через него и не идт.
    хотя.. .
    Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора) , по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

    а для переменного тока конденсатор является частью колебательного контура. он играет роль накопителя электрической энергии и в сочетаниии с катушкой, они прекрасно сосуществуют, переобразовывая электрическую энегрию в магнитную и обратно со скоростью/частотой равной их собственной omega = 1/sqrt(C*L)

    пример: такое явление как молния. думаю слышал. хотя плохой пример, там зарядка происходит через электризацию, изза трения атмосферного воздуха о поверхность земли. но пробой всегда как и в конденсаторе происходит только при достижении так называемого пробивного напряжения.

    не знаю, помогло ли тебе это 🙂

  6. Конденсатор на самом деле не пропускает сквозь себя ток. Конденсатор сначала накапливает на своих обкладках заряды - на одной обкладке избыток электронов, на другой недостаток - а потом отдает их, в результате во внешней цепи электроны бегают туда-сюда - с одной обкладки убегают, на вторую прибегают, потом обратно. То есть движение электронов туда-сюда во внешней цепи обеспечивается, в ней идет ток - но не внутри конденсатора.
    Сколько электронов может принять обкладка конденсатора при напряжении, в один вольт, называется емкостью конденсатора, но ее обычно измеряют не в триллионах электронов, а в условных единицах емкости - фарадах (микрофарадах, пикофарадах) .
    Когда говорят, что ток идет через конденсатор, это просто упрощение. Все происходит так, как будто бы через конденсатор шел ток, хотя на самом деле ток идет только снаружи конденсатора.
    Если углубляться в физику, то перераспределение энергии в поле между пластинами конденсатора называют током смещения в отличие от тока проводимости, представляющего собой перемещение зарядов, но ток смещения - это уже понятие из электродинамики, связанное с уравнениями Максвелла, совсем другой уровень абстракции.

Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

Что такое электрический конденсатор

Если говорить по-русски, то конденсатор можно обозвать "накопитель". Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток -- это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он "наестся"? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

Как устроен электрический конденсатор

В школе тебе рассказывали, что конденсатор -- это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

Принцип работы

Общий принцип работы достаточно прост: подали напряжение -- заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

Конденсатор в цепи постоянного тока

Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А -- отсутствие тока в цепи. Что случилось?

Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C - ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

Конденсатор в цепи переменного тока

Что такое переменный ток? Это когда электроны "бегут" сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то "+" заряд, то "-". Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток "беспрепятственно" проходит через конденсатор.

Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

Реактивное сопротивление конденсатора

Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

Другое дело ток переменный -- он проходит, но испытывает со стороны конденсатора сопротивление:

f - частота, С - ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

Где используются конденсаторы

Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

Какие бывают конденсаторы

Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

Радиолюбители, особенно как мы -- начинающие -- особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в "пакет" и запаковывались в корпус.

Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Бумажные конденсаторы

Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок -- алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен -- у них и провода односторонней проводимости бывают...

В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


У конденсаторов этого типа есть два неоспоримых преимущества. Первое -- можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе -- это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

Электролитические кондесаторы


Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

Продолжение следует...

Во второй части я планирую показать примеры типичного использования конденсаторов..

Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.

Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.

У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая - наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.

Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.

Электрические цепи бывают двух видов - постоянными или переменными . Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

  1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
  2. Установить лампочку, рассчитанную на такое же напряжение.
  3. В сеть установить конденсатор.

Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный - не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.

Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

  • Источника тока. Он должен быть переменным.
  • Потребителя электротока. Лучше всего использовать лампу.

Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.

Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.

просмотров