Устройство материнской платы компьютера. Назначение разъемов и комплектующих

Устройство материнской платы компьютера. Назначение разъемов и комплектующих

Motherboard (Mainboard) — Материнская (системная плата) – главный элемент компьютерной системы, от ее качества и быстродействия зависит быстродействие всей системы. Это самостоятельный элемент, который управляет внутренними связями и взаимодействует с внешними устройствами. Это большая коллекция разъемов, предназначенных для установки тех или иных комплектующих.

Материнская плата (mother board) – основная плата персонального компьютера, представляющая из себя лист стеклотекстолита, покрытый медной фольгой. Путем травления фольги получают тонкие медные проводники соединяющие электронные компоненты.

На рисунке представлена cтруктура типовой материнской платы.

Основные компоненты, установленные на материнской (системной) плате:

1. Центральный процессор установлен в спец. разъем и охлаждается радиатором и вентилятором.

2. Набор системной логики (англ. chipset) - набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух СБИС: «северного» и южного мостов».Именно набор системной логики определяет все ключевые особенности системной платы и то, какие устройства могут подключаться к ней.

3. Оперативная память (также оперативное запоминающее устройство, ОЗУ)

4. Загрузочное ПЗУ - хранит ПО, которое исполняется сразу после включения питания. Микросхемы перепрограммируемой памяти, в которой хранятся программы BIOS, программы тестирования ПК, загрузки ОС, драйверы устройств, начальные установки.

5. Разъемы для подключения дополнительных устройств (слоты) PCI / ISA / AGP/ PCI-E, разъемы для подключения накопителя на ГМД и ЖД.

Все компоненты мат.пл. связаны между собой системой проводников (линий), по которым происходит обмен информацией. Эти линии называют информационной шиной(Bus).

Взаимодействие между компонентами и устройствами ПК, подключенными к разным шинам, осуществляется с помощью мостов , реализованных на одной из микросхем Chipset. (например соединение шины ISA и PCI реализовано в микросхеме 82371АВ).

Размеры платы стандартизированы, их надо согласовывать с размером и типом корпуса ПК. При ее установке следует исключить контакт с дном и боковыми металлическими панелями корпуса, во избежание короткого замыкания.

Северный и Южный мост

Для согласования тактовой частоты и разрядности устройств на системной плате устанавливаются специальные микросхемы (их набор называется чипсетом), включающие в себя контроллер оперативной памяти и видеопамяти (так называемый северный мост ) и контроллер периферийных устройств (южный мост )

Южный и северный мосты материнской платы

Характеристики материнской платы

Поколение процессора под который предназначена материнская плата Устанавливать процессор одного поколения в материнскую плату другого нельзя. (Pentium, PII, PIII, PIV, Athlon). От того какой максимально мощный процессор использует ваша материнская плата зависит в принципе, сколько времени она у Вас прослужит.
Диапазон поддерживаемых процессором тактовых частот в рамках одного поколения. Обычно чем дороже плата, тем больше диапазон процессорных частот она поддерживает. Если плата поддерживает частоты 1700-1800 МГч, то процессор с частотой 2,1 ГГц не вставить.
Частота системной шины напрямую связана с частотой и скоростью работы про цессора. ЦП практически умножает рабочую частоту мат.пл. в 2-3раза. На выборе сочетания одного из коэффициентов с частотой системной шины основан способ разгона процессора. Разго-нять процессор следует осторожно, ибо, в следствие перегрева, он может сгореть. Intel иногда ставит специальные противоразгонные блокировки.
Базовый набор микросхем (chipset) . От модели чипсета зависят основные характеристики мат.пл.: поддерживаемые процессоры и ОП, тип системной шины, порты внешних и внутренних устройств. На одних и тех же чипсетах строятся различными фирмами мат. платы. Существует несколько базовых чипсетов. Intel, VIA, Nvideo, Ali, Sis
Примеры INTEL 845D 845E 845G 845РЕ 850E
Фирма-производитель ABIT, ACORP, ASUSTEK, GIGABITE, INTEL, ELITEGROUP
Форм-фактор – способ расположения основных микросхем и слотов Baby AT, AT, ATX и ATX-2.1, WTX
ATX (AT extension) разработан фирмой INTEL в 1995г.– появление его обусловлено наличием в ПК большого числа всевозможных внутренних устройств, большой интеграцией микросхем на мат.пл., что повысило требования к охлаждению элементов. Необходим был более удобный дос-туп к внутренним устройствам. Отличия AT и ATХ корпусов :
a) блоки питания: конструкция, размер, разъем для подачи питания на плату, мощ-ность(300,330,350,400 VA). Расширенное управление питанием, в спящем режиме эл.потребление = 0.
б) наличие интегрированных на плату внешних портов, уменьшает число кабелей внутри сис-темного блока (корпуса), облегчается доступ к компонентам системного блока. Порты распола-гаются компактно в ряд на задней стенке системного блока.
в) слоты расширения позволяют устанавливать полноразмерные карты расширения.
г) разъемы дисководов расположены рядом с их предполагаемыми посадочными местами, что позволяет использовать более короткие кабели.
АТХ-2.1 – усовершенствованный ATX Платформа для Р4. Усовершенствования коснулись блока питания с двумя дополнительными выходами к ядру процессора. Дополнительно второй для усиления питающих линий. Тяжелый радиатор ЦП прикреплен к плате винтами, поэтому давле-ние на плату не оказывается.
Базовый набор слотов и разъемов. Количество разъемов и их тип. (тип и количество ОП, AGP, PCI, ISA)
Наличие встроенных устройств. На материнской плате присутствуют чипы видео, звуковой, сетевой карт.

Мат.платы с интегрированными звуком, видео, сетью адаптерами (интегрированные)

Казалось бы это чуть дешевле, чем покупка отдельных компонентов, но такая интеграция имеет и свои недостатки:
1) Звук и видео встроенные платы имеют обычно очень скромные возможности
2) Даже если в данный момент вам и достаточно данных возможностей, то через полгода ситуа-ция может в корне измениться. мат. карта морально стареет гораздо медленнее, чем, скажем видеокарта.
3) Комбинированные карты на практике ведут себя обычно гораздо капризнее, чем карты с от-дельными устройствами. Возможны зависания во время работы программ и при тестирова-нии оборудования. Стоит подумать, прежде чем решиться на покупку комбинированной платы.

Виды разъемов материнской платы

Разъем для установки процессора. Для различных видов процессоров он свой. Назову основные используемые.

Intel Pentium — Socket — для PIII-IV – Socket 370, P4 Socket 423\Socket 478– квадратная форма с многочисленными гнездами по периметру квадрата – сокет. Для современных процессоров (Intel Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серии 3000, Core 2 Quad — Socket T (LGA775 ). Для PII – Slot1.

Для процессоров фирмы AMD K7 –Slot A, Socket 462 – узкий щелевидный разъем – слот (Athlon, Athlon XP, Sempron, Duron). Socket AM2 и АМ3- поддержка памяти DDR2 и DDR3 соответственно.

PCI – разъем обычно самый короткий на плате, белый, разделенный перемычкой на 2 части. В него может быть установлена видеокарта, звуковая карта, сетевая плата, внутренний модем, спе-циальные карты сканеров и др.(типа PCI). Высокая производительность, автоматическая на-стройка подключаемых контроллеров, малая нагрузка на процессор и независимость от типа ЦП. Например процессор может работать с памятью, в то время по шине PCI передаются данные. Основополагающим принципом шины PCI является применение так называемых мостов (Bridges), которые осуществляют связь шины с другими компонентами системы. Другой особен-ностью является реализация так называемых принципов Bus Master\ Bus Slave. Карта PCI Bus Master может считывать данные из ОП, так и записывать их туда без обращения к процессору, а Bus Slave только считывать данные. В шине PCI используется способ передачи данных названный способом рукопожатия (handshake), заключается в том, что в системе определяются 2 устройства: передающее (Iniciator) и приемное (Target). Когда передающее устройство готово к передаче, оно выставляет данные на линии данных и сопровождает их соответствующим сигналом (Iniciator Ready), при этом прием-ное устройство записывает данные в свои регистры и подает сигнал Target Ready, подтверждая запись данных и готовность к приему следующих. Установка всех сигналов производится строго в соответствии с тактовыми импульсами шины.

ISA – (Industry Standart Architecture) 16 разрядная архитектура. EISA – 32х-разрядная архитекту-ра (расширенный ISA). Более медленный интерфейс, чем предыдущий PCI. Слоты длинне в 1,5 раза и черного цвета. К ним обычно подключается множество дополнительных карт. Обычно их 2-4 шт. В современных ПК(Р4 К7 этих медленных разъемов нет).

AGP (Advanced\Accelerated Graphic Port) – ускоренный графический порт. Pro (профессиональ-ная серия). Это отдельное соединение находящееся между ЦП и графическим контроллером, что дает возможность процессору быстрее посылать команды на ИС графики, а графическому кон-троллеру — обмениваться данными с основной памятью со значительно большей скоростью. По-зволяет подключить одно устройство, дополняя шину PCI. Благодаря этому становится целесо-образным хранить 3х-мерные текстурные карты в основной памяти, а не предусматривать до-полнительную память в составе графической подсистемы. По существу AGP представляет собой усовершенствованный вариант PCI, способный обеспечивать более высокие скорости передачи данных. AGP обеспечивает внутренний прямой путь между графическим адаптером (SVGA) и основной памятью ПК. Предназначен для задач с графикой: 3D-игры, вывод сцен с виртуальной реальностью, сложная обработка видеоизображений (слайдов, фотографий).

Слоты для установки ОП

В них имеются замки-защелки. Используются слоты 3х видов памяти типа Dimm – DDR, DDRII, DDRIII) . Количество слотов может быть от 2-4.

Контроллеры портов – разъемы на задней стенке ПК
а) параллельные порты (LPT1, LPT2) – 25 гнезд(дырочек чаще голубого или розового цвета) – для подключения принтеров и сканеров
б)последовательные порты (Com1 Com2) 9 или 25 штырьков. Для подключения мыши, внешнего модема. Параллельные порты выполняют операции вв/выв с большей скоростью, чем последовательные засчет использова-ния большего числа проводов в кабеле. Некоторые устройства (модемы) могут подключаться и параллельным и к последовательным портам.
в)PS2 – небольшой круглый разъем для мыши и клавиатуры. Зеленый – мышь, сереневый – клавиатура.
г)порт USB (Universal Serial Bus) USB2 – универсальная последовательная шина. Позволяет подключать к ПК мно-жество внешних устройств, соединенных в цепочку. (первое к ПК, второе к первому …). Для подключения принте-ров, сканеров, фотоаппаратов и др. Представляет из себя 2 пары скрученных проводов для передачи данных каждом направлении (дифференциальное включение) и линию питанию. Один порт может адресовать 63 устройства (USB2 -100). Таким образом к компьютеру может быть подключено только одно периферийное устройство, а все осталь-ные(клавиатура, мышь, модем) соединяются с концентратором, который встроен в монитор, клавиатуру или другой USB-устройство. USB может подключаться в топологии звезда или общая шина. Передача данных осуществляется как в синхронном так и в асинхронном режиме. Скорость передачи 12-15 Мбит/сек. У USB есть возможность со-единения с цифровой телефонной линией без дополнительных плат. Конфигурирование устройств к USB осуществ-ляется автоматически.
д)игровой порт (15 гнезд) подключается джойстик. Имеется не у всех ПК.
е)RAID-контроллер. RAID- архитектура предусматривает, что любая информация хранится по крайней мере на двух отдельных жестких дисках, если один из них выходит из строя, то пользователи по прежнему имеет доступ к храни-мым на сервере файлам, так что отказы дисков не приводят к простоям. Архитектура RAID обеспечивает не только целостность данных, но и расслоение дисковой памяти. Данные записываются на несколько накопителей методом чередования, так что в операции считывания и записи одновременно участвуют несколько дисков. В результате по-вышается производительность, ибо дисковая подсистема перестает быть ограничивающим скорость фактором.

Каждый день миллионы человек садятся за свои рабочие места, включают ПК и приступают к выполнению своих обязанностей. Однако большинство из них понятия не имеют о том, как устроен их компьютер, как всё это работает. Если спросить о его устройстве, то большинство пользователей ответят: монитор, клавиатура, мышка и системный блок. А на вопрос о том, без чего нельзя запустить машину, отвечают: без электричества. При этом мало кто догадывается о строении и способен различить хоть какие-то платы внутри.

В этой статье будет рассмотрена одна из основополагающих частей компьютера, без которой его работа была бы невозможна в принципе. Если вы - начинающий пользователь и собираетесь собрать свой ПК, а не пользоваться готовыми предложениями рынка, вам пригодятся советы по материнским платам, которые вы получите здесь.

Опора компьютера

Материнская плата - это не что иное, как основа вашего компьютера. Основополагающее и связывающее звено всех элементов. Другое её название - системная плата. Основной ее функцией является передача сигналов управления и данных между комплектующими - процессором, чипсетом, картами расширения, внешними устройствами.

Основные характеристики материнской платы, на которые стоит обращать внимание - форм-фактор, количество разъёмов под платы расширения PCI Express, тип поддерживаемой оперативной памяти и её объём, тип разъёма процессора. И некоторые дополнительные, но не критичные детали - тип порта для мышки, версия USB-порта, наличие Wi-Fi и HDMI.

Исходя из этих характеристик, пользователь должен совершить выбор при покупке. Главное помнить, что лучшая материнская плата та, которая идеально подходит к выбранным вами остальным комплектующим.

Структура

Любая материнская плата разделяется на две основные взаимодействующие части - северный и южный мост.

Южный мост - это единая микросхема, которая связывает между собой большинство медленных взаимодействий в компьютере, а также связывает их с процессором посредством северного моста. Физически южный мост состоит из таких частей:

  • контроллеры PCI, LPC, Super I/O;
  • IDE и SATA контроллеры;
  • часы;
  • Bios;
  • управление питанием;
  • звук;
  • управление сетевыми картами.

В некоторых случаях может напрямую управлять мышью, клавиатурой, внешними портами, хотя зачастую они управляются через специальный контроллер ввода-вывода Super I/O.

Северный мост, иначе называемый контроллером-концентратором памяти, включает в себя:

  • процессор;
  • оперативную память, в случае если она не подключена напрямую к процессору;
  • видеоадаптер.

Именно северный мост в составе материнской платы выделяет наибольшее количество тепла, вследствие чего в большинстве случаев при реализации архитектуры компьютера для него требуется индивидуальная система охлаждения.

С развитием компьютерных технологий некоторые производители стали отказываться от северного моста в составе архитектуры. Например, материнские платы Intel, начиная с Intel Nehalem, убрали северный мост, перенеся часть его функций на центральный процессор, сократив, таким образом, количество активных компонентов материнской платы.

Собираем компьютер

Первое, что необходимо выяснить перед покупкой, это форм-фактор. В обязательном порядке уточняйте у продавцов размеры материнской платы. В большинстве современных персональных настольных компьютеров используется стандарт ATX. Подробнее, как подключить материнскую плату, рассмотрим ниже.

  1. Первым делом устанавливаете плату в корпус компьютера и закрепляете с помощью винтиков.
  2. В разъём 1 подключаете шлейф, идущий от вашего блока питания. Это основной элемент, осуществляющий питание материнской платы. Будьте внимательны, существуют разъёмы на 20 и 24 pin (количество штырьков), поэтому при покупке убедитесь, что ваш блок питания подходит к системной плате. В качестве совета стоит сказать, что в первую очередь стоит брать материнку. И уже к ней подбирать блок питания.
  3. Во второй разъём подключаем также идущий от блока питания шнур, предназначенный для питания центрального процессора. Также нажимаем до самого упора, чтобы защелка встала на место, и питание не отключилось во время работы.
  4. На третьем месте обозначен разъем на материнской плате, для немного устаревшего, но до сих пор встречающегося привода для чтения дискет. Этот разъём имеет незначительные отличия от разъёма 4, но если присмотреться, то сможете запросто увидеть отличия.
  5. Для подключения жесткого диска или CD/DVD-привода используется интерфейс IDE ATA. Шлейф для этого разъёма отличается тем, что у него два выходных интерфейса, поэтому при подключении одного шлейфа вы можете подключить сразу и CD-привод, и жесткий диск. В отличие от приведённого примера, большинство материнских плат имеют по несколько таких разъёмов.
  6. Еще один способ подключения жесткого диска и CD/DVD-привода - это SATA интерфейс. Подключается он через разъем №5. Он используется в новых устройствах, и перепутать его с другим разъёмом не представляется возможным.

Разобравшись, как подключить материнскую плату, переходим к подсоединению оставшихся устройств и интерфейсов.

Платы расширения

После подключения внешних и внутренних устройств, а также питания к материнской плате, можно приступать к подключению плат расширения - оперативной памяти, графического адаптера, сетевой карты.

При покупке вам должна была быть выдана полная спецификация и типы разъемов. Помните, что оперативную память необходимо выбирать того же стандарта, что и указан в документации. Память DDR2 невозможно подключить в разъем DDR3, поэтому при покупке убедитесь, что берёте современную материнскую плату, с новейшими интерфейсами. Найти комплектующие старых форматов проблематично, а новые не намного отличаются по ценовой категории.

Что касается графического адаптера, то здесь вы не ошибетесь. В большинстве случаев это самый большой разъем на материнской плате. В старых моделях подключение производилось простым защелкиванием видеокарты в паз. В современных мощных видеокартах присутствует своя независимая система охлаждения. Её также надо подключать непосредственно к материнской плате с помощью двухпинового шлейфа. Обычно разъём питания находится ближе к процессору, поскольку к нему же подключается и охлаждение самого процессора.

Самой важной частью, подключаемой к системной плате, станет ЦПУ. Процессоры также имеют свои уникальные разъемы. Например, материнская плата ASUS VANGUARD B85 имеет сокет LGA1150, к которому можно подключить процессоры Intel i7/i5/i3, в то время как с другими могут возникнуть проблемы.

Рассмотрим ниже понятие о том, какая же лучшая материнская плата. Несмотря на то, что компания Intel имеет огромный опыт в разработке оборудования для персональных компьютеров, сейчас она занимается разработкой именно комплектующих. Поэтому даже самые крупные компании вынуждены выпускать продукцию под материнские платы Intel.

ASUS Z97-A

На форуме 2014 года, проведённом компанией Asus, были, как обычно, представлены новинки. Среди них - эта бюджетная материнская плата, цена которой будет по карману большинству обывателей. Отказавшись от привычного дизайна, компания «Асус» выпустила материнку в бронзовых оттенках, с достаточно богатым оснащением. В состав этой недорогой платы входят:

  • три слота PCIe x16;
  • четыре слота DIMM под оперативную память, с поддержкой до 32 гигабайт;
  • один современный слот SATA Express;
  • а также, даже на такой невзрачной материнской плате, был установлен звуковой чипсет Crystal Sound 2.

Без сомнения, компания Asus повышает планки для своих материнских плат, оставаясь в той же ценовой категории, что и раньше. Это позволит им оставаться среди лидеров на рынке компьютерных комплектующих.

ASUS Z97-DELUXE

На той же выставке была представлена еще одна модель материнской платы. Можно сказать, что она достойна стать настоящим лидером среди своих сестер. Флагманская материнская плата ASUS предоставляет пользователю поистине безграничный потенциал расширения своего компьютера. Секретом такого успеха является количество интерфейсов, которых стало в два раза больше. Вот характеристики материнской платы:

  • два интерфейса Sata Express;
  • 6 дополнительных портов SATS 6G;
  • 8 портов USB 3.0;
  • 3 слота PCI Express 3.0 x16;
  • звук Crystal Sound 2.

Конечно, для рядового пользователя такая материнская плата, цена на которую может зашкаливать за 10 000 рублей, не подходит, поэтому, если вы стараетесь собрать себе бюджетный компьютер своими руками, то обязательно изучите варианты. Продавцы-консультанты в магазинах предоставляют разнообразнейший выбор в доступной ценовой категории от 2 000 до 8 000 рублей.

Ноутбук

Материнская плата для ноутбука - это не просто тело, к которому подключены устройства. Это сама жизнь ноутбука. Если вы, не дай бог, прольёте на неё кофе или повредите, то в большинстве случаев готовьтесь распрощаться ещё и с половиной оборудования, установленного внутри.

Дело в том, что далеко не у всех ноутбуков на материнской плате возможно заменить компоненты. Встроенная видеокарта или оперативная память потребует дополнительных расходов в случае ремонта, поэтому всегда четко представляйте, для чего вам компьютер и нужен ли ноутбук дома.

Замена компонентов ноутбука представляется сложной даже для опытных системных администраторов, поэтому при поломке его части или, в особенности, материнской платы, в 90% случаев вам придётся обращаться в сервисный центр.

Уход за материнской платой

Многие полагают, что персональный компьютер - это своеобразный инструмент для работы, наподобие пилы или молотка. Понятное дело, что в таком случае пользователь абсолютно не прав. Компьютер, как и, в частности, материнская плата - это целая взаимодействующая система, состоящая из миллионов частей. Представьте себе, что материнская плата, лежащая на столе - это город, а миллиарды бит информации, ежедневно проходящих через неё - это жители. Понятно дело, что за своим инструментом нужно следить и ухаживать.

Когда производитель тестирует свой продукт, он не рассчитывает, что в нём поселятся насекомые или, хуже того, крысы. Наверно, польза профилактики компьютера очевидна, от того как вы относитесь к своему рабочему месту, будет зависеть то, как долго оно вам прослужит. Тем более, уход за материнской платой и внутренностями компьютера не займёт у вас много времени.

Хотя бы раз в месяц, а лучше чаще, полностью отключайте компьютер от сети и снимайте крышку с блока питания. В любом компьютерном магазине вы сможете купить баллон со сжатым воздухом, либо можете воспользоваться пылесосом, настроенным на выдув. Обязательно продуйте все радиаторы и уголки системного блока, избегая прямого контакта с платами и проводами.

Если вы давно не чистили системный блок, делайте это на улице и в марлевой повязке, чтобы не надышаться пыли. Ни в коем случае не используйте жидкости или аэрозоли. Помните, что пыль в системах охлаждения, да и на самих платах, способствует повышению температуры и может привести к их поломке. Поэтому уборка внутри компьютера - это не прихоть, а, скорее, жизненная необходимость.

Ремонт

Если вы все-таки не смогли уберечь свой компьютер от поломки и не способны определить самостоятельно, какая часть повреждена, лучше воспользуйтесь услугами сервисного центра. В большинстве случаев определить проблему самостоятельно можно, только если сломалось что-то из комплектующих. Если проблема в материнской плате, то с этим справится только электронщик.

Материнская плата - это важнейший компонент, для ремонта которого потребуются
специальные навыки и оборудование. Если же у вас сломался ноутбук, то еще и достаточно много места для его разборки.

Залог успешного ремонта это важнейшей детали - в правильной диагностике и поиске неполадок. Самой большой ошибкой рядового пользователя станет попытка самостоятельного ремонта. В таком случае человек может не только не починить плату, но и довести её до состояния, когда её придётся выкинуть на помойку.

Если же у вас появился сбой в работе ноутбука, как можно скорее доставьте его в сервисный центр. Материнская плата для ноутбука - сложный для замены элемент. Поэтому игнорирование мелких сбоев может привести к тому, что, оставшись безучастным к ошибке один раз, вам придется столкнуться с более серьёзными проблемами.

Важно осознавать, что материнская плата - это основная составляющая стоимости ноутбука. Поэтому при сбоях лучше обращаться к профессионалам сразу и не затягивать, они помогут вернуть вам ноутбук к жизни при минимальных затратах.

Заключение

Итак, материнская плата - это основа жизни вашего компьютера. Многие программисты утверждают, что у компьютеров есть своя душа и характер. Они признают только одного хозяина. Если поверить в эту теорию, то душа компьютера находится именно в материнской плате.

Выбранная с душой и вниманием материнская плата, при должном уходе, прослужит вам долго, несмотря на её стоимость или составляющие. О ней надо заботиться, ухаживать и тогда она прослужит вам очень долго. Никогда не стесняйтесь обращаться к специалистам и не проводите её ремонт самостоятельно.

Следуя советам этой статьи, вы без труда сможете собрать свой компьютер и не волноваться о том, что он вдруг откажет вам в самый неподходящий момент.

У персонального компьютера имеется множество составляющих и компонентов. Одним из самых важных элементов, без которого просто невозможно представить себе работу данного устройства, является материнская плата. Схема материнской платы достаточно сложна. Сама по себе она включает в себя несколько составных частей. Что же в него входит?

Материнская плата: что это?

Материнской платой называют устройство, являющееся основной построения вычислительной системы в технике. Материнская плата монтируется внутри корпуса вместе с блоком питания и системой охлаждения. Для классификации данных элементов используются различные стандарты, которые определяют размеры данного устройства, метод его крепления, размещение портов ввода/вывода, разъемов для процессора и оперативной памяти, шин. В рамках данной статьи мы будем постепенно обрисовывать схему материнской платы. Начать стоит с основного.

Печатная плата

На печатной плате расположены сигнальные линии. Они нужны для того, чтобы соединять между собой все элементы. Если разместить сигнальные линии слишком быстро друг к другу, то могут возникать серьезные помехи. Чем больше длина линии, тем выше будет уровень нестабильности. По этой причине могут возникать сбои даже в работе очень серьезной вычислительной техники. Чтобы минимизировать данный эффект, сегодня делают многослойные печатные платы. Тем самым производители многократно увеличивают полезную площадь платы и расстояние между линиями. Чаще всего в современных устройствах используют шесть слоев.

Три из них являются сигнальными, один используется для заземления и два для питания. На печатных платах размещаются все элементы, которые способны превратить данное устройство в неотъемлемую часть персонального компьютера. Сюда входят порты и компоненты. По схеме подключения материнской платы можно судить о том, что можно будет присоединить в будущем. На современных устройствах имеется примерно полдесятка разъемов для различных устройств помимо тех, что мы будем рассматривать в рамках данной статьи. Сразу стоит отметить, что большинство разработчиков лояльно относятся к желанию пользователей усовершенствовать свою продукцию путем добавления новых составляющих, вроде модулей оперативной памяти.

Чипсет

Данное устройство также называют набором системной логики. Чипсетами называют микросхемы, которые предназначены для беспроблемного функционирования ОЗУ, центрального процессора, видеокарты, контроллеров периферийных устройств и других компонентов, которые подключаются к материнской плате. Именно благодаря данным элементам определяются основные параметры данного устройства. Как правило, современные наборы логики строятся на базе двух компонентов. Каждый из этих компонентов представляет собой отдельный чипсет. Соединены они при помощи высокоскоростной шины. Для схемы материнской платы существует такая тенденция, что постепенно они объединяются. В результате происходит разгрузка каналов связи с различными периферийными устройствами и дополнениями. По мере развития технологии интеграции схемы получаются более дешевыми и маленькими. Уменьшается также и уровень потребления энергии.

Северный мост

Данный компонент предназначен для контроля и направления данных, получаемых из четырех шин: системной, связанной с памятью, обменивающейся информацией с графическим адаптеров и связанной с южным мостом. Состоит данное устройство из ряда интерфейсов и контроллеров памяти. Вторую функцию можно считать устаревшей, поскольку такое устройство имеется во всех современных компьютерах. То же самое можно сказать и про интерфейс, который отвечает за графику.

Южный мост

Еще одним важным компонентом любой материнской платы является южный мост. В данной случае схема устройства будет значительно больше. В нее входят шины, которые отвечают за поддержку связи с северным мостом, шины, соединяющие мост с платами расширения, шины, отвечающие за обмен данными с другими вычислительными и периферийными устройствами, шины, занимающиеся связью с жесткими дисками, шины, обслуживающие обмен данными с медленными устройствами.

BIOS, базовая система ввода/вывода

BIOS представляет собой специальную программу, которая прошивается в ПЗУ (постоянном запоминающем устройстве). BIOS имеется на материнской плате и других элементах ЭВМ, типа видеокарт, контроллеров и т.п. BIOS имеет особую важность, поскольку именно она проверяет при включении компьютера большинство подключенных устройств, а именно, жесткие диски, процессор, память и так далее. БИОС при этом инициализирует контроллеры, которые имеются на материнской плате. Вместе с ними запускаются и некоторые устройства, происходит процесс установления их базовых параметров. Если все будет работать нормально, БИОС автоматически передаст управление операционной системе.

Генератор тактовой частоты

Данное устройство используется для формирования периодического сигнала высокой стабильности. Данный сигнал будет синхронизировать работу элементов компьютера. Состоит он из тактового генератора и кварцевого резонатора. Последний может создавать сигналы сам по себе. Однако данные сигналы могут не получаться с той частотой, которая необходима для функционирования шин, процессора и современной памяти. По этой причине используется тактовый генератор. Скорость, с которой выполняются вычисления, во многом будет зависеть от частоты импульсов. На любую операцию приходится определенное количество тактов. Чем их больше в секунду, тем выше производительность.

Данное утверждение верно только для тех устройств, которые имеют одинаковую микроархитектуру. Можно увеличить показатель тактовой частоты, тогда возрастет и производительность электронно-вычислительной машин. Здесь есть и свои недостатки. Так, например, может уменьшиться стабильность работы компонентов компьютера. По этой причине после выполнения данной операции, необходимо всегда проверять работоспособность компьютера. Еще одним недостатком является то, что из-за тяжелых условий работы могут повредиться различные элементы. Характер повреждений может быть нарастающим.

Другие элементы материнской платы

По схеме материнской платы можно понять, что перечисленные выше компоненты, это еще далеко не все. Что же еще может присутствовать на материнской плате? Как правило, на этом устройстве имеется большое количество конденсаторов. Их задача заключается в том, чтобы обеспечивать ровный поток напряжения. Необходимы они по той причине, что уровень потребления энергии может резко измениться. Происходит это при остановке или возобновлении работы. Конденсаторы используются для того, чтобы сгладить скачки напряжения. Благодаря этому можно повысить стабильность работы техники и увеличить срок службы многих компонентов, имеющихся в ЭВМ.

Основной частью любой компьютерной системы является материнская плата с главным процессором и поддерживающими его микросхемами. Функционально материнскую плату можно описать различным образом. Иногда такая плата содержит всю схему компьютера (одноплатные). В противоположность одноплатным, в шиноориентированых компьютерах системная плата реализует схему минимальной конфигурации, остальные функции реализуются с помощью многочисленных дополнительных плат. Все компоненты соединяются шиной . В системной плате нет видеоадаптера, некоторых видов памяти и средств связи с дополнительными устройствами. Эти устройства (платы расширения) добавляются к системной плате путем присоединения к шине расширения, которая является частью системной платы.

Первая материнская плата была разработана фирмой IBM, и показана в августе 1981 года (PC-1). В 1983 году появился компьютер с увеличенной системной платой (PC-2). Максимум, что могла поддерживать PC-1 без использования плат расширения - 64К памяти. PC-2 имела уже 256К, но наиболее важное различие заключалось в программировании двух плат. Системная плата PC-1 не могла без корректировки поддерживать наиболее мощные устройства расширения, таких, как жесткий диск и улучшенные видеоадаптеры.

- это комплекс различных устройств поддерживающий работу системы в целом. Обязательными атрибутами материнской платы являются базовый процессор , оперативная память , системный BIOS, контролер клавиатуры , разъемы расширения.

внутри компьютера - главная монтажная деталь, к которой крепятся остальные компоненты.

Принормальной работе материнской платы о ней не вспоминают, пока не понадобится усовершенствовать компьютер. Обычно хотят поставить более быстрый процессор, что и ведет к замене материнской платы. Нельзя, например, заменить старый Pentium MMX на Pentium III без новой материнской платы.

По внешнему виду материнской платы можно определить, какие нужны процессор , память и дополнительные устройства, вставляемые во внешние порты и гнезда компьютера.

По размерам материнские платы в общем случае можно разделить на три группы. Раньше все материнские платы имели размеры 8,5/11 дюймов. В XT размеры увеличились на 1 дюйм в AT размеры возросли еще больше.Часто речь может идти о “зеленых” платах (green mothеrboard). Сейчас выпускаются только такие платы. Данные системные платы позволяют реализовать несколько экономичных режимов энергопотребления (в том числе, так называемый “sleep”, при котором отключается питание от компонентов компьютера, которые в данный момент неработают).

Американское агентство защиты окружающей среды (EPA) сосредоточила свое внимание на уменьшении потребления энергии компьютерными системами. Оборудование, удовлетворяющее ее (EPA) требованиям должно в среднем (в режиме холостого хода) потреблять не более 30Вт, не использовать токсичные материалы и допускать 100% утилизацию. Поскольку современные микропроцессоры используют напряжение питания 3,3-4В, а на плату подается 5В, на системных
платах монтируют преобразователи напряжение.

Частота процессора, системной шины и шин периферийных устройств

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост).

Рис.1. Логическая схема системной платы


Cеверный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины - 100 МГц).

К северному мосту подключается шина PCI (Peripherial Component Interconnect bus - шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше - 33 МГц. Контроллеры периферийных устройств (звуковая плата , сетевая плата, SCSI-контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины , связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP (Accelerated Graphic Port - ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI.

Южный мост обеспечивает обмен информацией между северным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски , CD-ROM , DVD-ROM) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access - прямое подключение к памяти).

Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus - универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств. Клавиатура подключается обычно с помощью порта PS/2.

Устройство и назначение материнской платы

Материнская или системная плата – это многослойная печатная плата, являющаяся основой ЭВМ, определяющая ее архитектуру, производительность и осуществляющая связь между всеми подключенными к ней элементами и координацию их работы.

1. Введение.

Материнская плата – это один из важнейших элементов ЭВМ, определяющий ее облик и обеспечивающий взаимодействие всех подключаемых к материнской плате устройств.

На материнской плате размещаются все основные элементы ЭВМ, такие как:

Набор системной логики или чипсет – основной компонент материнской платы, определяющий какой тип процессора, тип ОЗУ, тип системной шины можно использовать;

Слот для установки процессора. Определяет, какой именно тип процессоров можно подсоединить к материнской плате. В процессорах могут использоваться различные интерфейсы системной шины (например, FSB, DMI, QPI и т.д.), какие то процессоры могут иметь встроенную графическую систему или контроллер памяти, может отличаться количество "ножек" и так далее. Соответственно для каждого типа процессора необходимо использовать свой слот для установки. Зачастую производители процессоров и материнских плат злоупотребляют этим, гонясь за дополнительной выгодой, и создают новые процессоры не совместимые с существующими типами слотов, даже если этого можно было избежать. В результате приходится при обновлении компьютера менять не только процессор, но и материнскую плату со всеми вытекающими из этого последствиями.

- центральный процессор – основное устройство ЭВМ, выполняющее математические, логические операции и операции управления всеми остальными элементами ЭВМ;

Контроллер ОЗУ (оперативно запоминающее устройство). Раньше контроллер ОЗУ встраивали в чипсет, но сейчас большинство процессоров имеют встроенный контроллер ОЗУ, что позволяет увеличить общую производительность и разгрузить чипсет.

ОЗУ – набор микросхем для временного хранения данных. В современных материнских платах имеется возможность подключения одновременно нескольких микросхем ОЗУ, обычно четырех или более.

ППЗУ (БИОС), содержащие программное обеспечение, осуществляющее тестирование основных компонентов ЭВМ и настройку материнской платы. И память CMOS хранящая настройки работы BIOS. Часто устанавливают несколько микросхем памяти CMOS для возможности быстрого восстановления работоспособности ЭВМ в экстренном случае, например, неудачной попытки разгона;

Аккумулятор или батарейка, питающая память CMOS;

Контроллеры каналов ввода-вывода: USB, COM, LPT, ATA, SATA, SCSI, FireWire, Ethernet и др. Какие именно каналы ввода-вывода будут поддерживаться, определяется типом используемой материнской платы. В случае необходимости, дополнительные контроллеры ввода-вывода можно устанавливать в виде плат расширения;

Кварцевый генератор, вырабатывающий сигналы, по которым синхронизируется работа всех элементов ЭВМ;

Таймеры;

Контроллер прерываний. Сигналы прерываний от различных устройств поступают не напрямую в процессор, а в контроллер прерываний, который устанавливает сигнал прерывания с соответствующим приоритетом в активное состояние;

Разъемы для установки плат расширения: видеокарт, звуковой карты и т.д.;

Регуляторы напряжения, преобразующие исходное напряжение в требуемое для питания компонентов установленных на материнской плате;

Средства мониторинга, измеряющие скорость вращения вентиляторов, температуру основных элементов ЭВМ, питающее напряжение и т.д.;

Звуковая карта. Практически все материнские платы содержат встроенные звуковые карты, позволяющие получить приличное качество звука. При необходимости можно установить дополнительную дискретную звуковую карту, обеспечивающую лучшее звучание, но в большинстве случаев это не требуется;

Встроенный динамик. Главным образом используется для диагностики работоспособности системы. Так по длительности и последовательности звуковых сигналов при включении ЭВМ можно определить большинство неисправностей аппаратуры;

Шины – проводники для обмена сигналами между компонентами ЭВМ.

2. Печатная плата.

Основу материнской платы составляет печатная плата. На печатной плате располагаются сигнальные линии, часто называемые сигнальными дорожками, соединяющими между собой все элементы материнской платы. Если сигнальные дорожки расположены слишком близко друг к другу, то передаваемые по ним сигналы будут создавать помехи друг для друга. Чем длиннее дорожка и выше скорость передачи данных по ней, тем больше она создает помех для соседних дорожек и тем больше она уязвима для таких помех.

В результате, могут возникать сбои в работе даже сверхнадежных и дорогих компонентов ЭВМ. Поэтому основная задача при производстве печатной платы так разместить сигнальные дорожки, чтобы минимизировать действие помех на передаваемые сигналы. Для этого печатную плату делают многослойной, многократно увеличивая полезную площадь печатной платы и расстояние между дорожками.

Обычно современные материнские платы имеют шесть слоев: три сигнальных слоя, слой заземления и две пластины питания.

Однако количество слоев питания и сигнальных слоев может варьироваться, в зависимости от особенностей материнских плат.

Разметка и длина дорожек крайне важна для нормальной работы всех компонентов ЭВМ, поэтому при выборе материнской платы надо особое внимание уделять качеству печатной платы и разводке дорожек. Особенно это важно, если вы собираетесь использовать компоненты ЭВМ с нестандартными настройками и параметрами работы. Например, разгонять процессор или память.

На печатной плате располагаются все компоненты материнской платы и разъемы для подключения плат расширения и периферийных устройств. Ниже на рисунке изображена структурная схема расположения компонентов на печатной плате.

Рассмотрим более подробно все компоненты материнской платы и начнем с главного компонента – чипсета.

3. Чипсет.

Чипсет или набор системной логики – это основной набор микросхем материнской платы, обеспечивающий совместное функционирование центрального процессора, ОЗУ, видеокарты, контроллеров периферийных устройств и других компонентов, подключаемых к материнской плате. Именно он определяет основные параметры материнской платы: тип поддерживаемого процессора, объем, канальность и тип ОЗУ, частоту и тип системной шины и шины памяти, наборы контроллеров периферийных устройств и так далее.

Как правило, современные наборы системной логики строятся на базе двух компонентов, представляющих собой отдельные чипсеты, связанные друг с другом высокоскоростной шиной.

Однако последнее время появилась тенденция объединения северного и южного моста в единый компонент, так как контроллер памяти все чаще встраивают непосредственно в процессор, тем самым разгружая северный мост, и появляются все более быстрые и быстрые каналы связи с периферийными устройствами и платами расширения. А также развивается технология производства интегральных схем, позволяющая делать их более миниатюрными, дешевыми и потребляющими меньше энергии.

Объединение северного и южного моста в один чипсет позволяет поднять производительность системы, за счет уменьшения времени взаимодействия с периферийными устройствами и внутренними компонентами, ранее подключаемыми к южному мосту, но значительно усложняет конструкцию чипсета, делает его более сложным для модернизации и несколько увеличивает стоимость материнской платы.

Но пока что большинство материнских плат делают на основе чипсета разделенного на два компонента. Называются эти компоненты Северный и Южный мост.

Названия Северный и Южный - исторические. Они означают расположение компонентов чипсета относительно шины PCI: Северный находится выше, а Южный - ниже. Почему мост? Это название дали чипсетам по выполняемым ими функциям: они служат для связи различных шин и интерфейсов.

Причины разделения чипсета на две части следующие:

1.Различия скоростных режимов работы.

Северный мост работает с самыми быстрыми и требующими большой пропускной способности шины компонентами. К числу таких компонентов относится видеокарта и память. Однако сегодня большинство процессоров имеют встроенный контроллер памяти, а многие и встроенную графическую систему, хотя и сильно уступающую дискретным видеокартам, но все же часто применяемую в бюджетных персональных компьютерах, ноутбуках и нетбуках. Поэтому, с каждым годом нагрузки на северный мост снижаются, что уменьшает необходимость разделения чипсета на две части.

2. Более частое обновление стандартов периферии, чем основных частей ЭВМ.

Стандарты шин связи с памятью, видеокартой и процессором изменяются гораздо реже, чем стандарты связи с платами расширения и периферийными устройствами. Что позволяет, в случае изменения интерфейса связи с периферийными устройствами или разработки нового канала связи, не изменять весь чипсет, а заменить только южный мост. К тому же северный мост работает с более быстрыми устройствами и устроен сложнее, чем южный мост, так как от его работы во многом зависит общая производительность системы. Поэтому его изменение - дорогая и сложная работа. Но, несмотря на это, наблюдается тенденция объединения северного и южного моста в одну интегральную схему.

3.1. Основные функции Северного моста.

Северный мост, как следует из его названия, выполняет функции контроля и направления потока данных из 4-х шин:

  1. Шины связи с процессором или системной шины.
  2. Шины связи с памятью.
  3. Шины связи с графическим адаптером.
  4. Шины связи с южным мостом.

В соответствии с выполняемыми функциями и устроен северный мост. Он состоит из интерфейса системной шины, интерфейса шины связи с южным мостом, контроллера памяти, интерфейса шины связи с графической картой.

На данный момент большинство процессоров имеют встроенный контроллер памяти, так что функцию контроллера памяти можно считать для северного моста устаревшей. И учитывая, что существует множество типов оперативной памяти, для описания памяти и технологии ее взаимодействия с процессором, выделим отдельную статью.

В бюджетных ЭВМ иногда в северный мост встраивают графическую систему. Однако на данный момент более распространенную практику имеет установка графической системы непосредственно в процессор, так что эту функцию северного моста тоже будем считать устаревшей.

Таким образом, основная задача чипсета - грамотно и быстро распределять все запросы от процессора, видеокарты и южного моста, расставлять приоритеты и создавать, если это необходимо, очередность. Причем он должен быть настолько сбалансирован, чтобы как можно сильнее сократить простои при попытке доступа компонентов ЭВМ к тем или иным ресурсам.

Рассмотрим более подробно существующие интерфейсы связи с процессором, графическим адаптером и южным мостом.

3.1.1. Интерфейсы связи с процессором.

На данный момент существуют следующие интерфейсы связи процессора с северным мостом: FSB, DMI, HyperTransport, QPI.

FSB (Front Site Bus) - системная шина, используемая для связи центрального процессора с северным мостом в 1990-х и 2000-х годах. FSB разработана компанией Intel и впервые использовалась в компьютерах на базе процессоров Pentium.

Частота работы шины FSB является одним из важнейших параметров работы ЭВМ и во многом определяет производительность всей системы. Обычно она - в несколько раз меньше частоты работы процессора.

Частоты, на которых работают центральный процессор и системная шина, имеют общую опорную частоту и в упрощенном виде рассчитываются, как Vп = Vo*k, где Vп – частота работы процессора, Vo-опорная частота, k – множитель. Обычно в современных системах опорная частота равняется частоте шины FSB.

Большинство материнских плат позволяют вручную увеличивать частоту системной шины или множитель, изменяя настройки в BIOS. В старых материнских платах подобные настройки изменялись с помощью перестановки перемычек. Увеличение частоты системной шины или множителя увеличивает производительность ЭВМ. Однако в большинстве современных процессоров средней ценовой категории множитель заблокирован, и единственный способ поднять производительность вычислительной системы – это увеличить частоту системной шины.

Частота системной шины FSB постепенно возрастала с 50 МГц, для процессоров класса Intel Pentium и AMD K5 в начале 1990-х годов, до 400 МГц, для процессоров класса Xeon и Core 2 в конце 2000-х. При этом пропусканная способность возрастала с 400 Мбит/с до 12800 Мбит/с.

Шина FSB использовалась в процессорах типа Атом, Celeron, Pentium, Core 2, и Xeon вплоть до 2008 года. На данный момент эта шина вытеснена системными шинами DMI, QPI и Hyper Transport.

HyperTransport – универсальная высокоскоростная шина типа точка-точка с низкой латентностью, используемая для связи процессора с северным мостом. Шина HyperTransport - двунаправленная, то есть для обмена в каждую сторону выделена своя линия связи. К тому же она работает по технологии DDR (Double Data Rate), передавая данные, как по фронту, так и по спаду тактового импульса.

Технология разработана консорциумом HyperTransport Technology во главе с компанией AMD. Стоит отметить, что стандарт HyperTransport - открытый, что позволяет использовать его в своих устройствах различным компаниям.

Первая версия HyperTransport была представлена в 2001 году, и позволяла производить обмен со скоростью 800 МТр/с (800 Мега Транзакций в секунду или 838860800 обменов в секунду) с максимальной пропускной способностью - 12.8 ГБайт/с. Но уже в 2004 году была выпущена новая модификация шины HyperTransport (v.2.0), обеспечивающая 1.4 ГТр/с с максимальной пропускной способностью - 22.4 ГБайт/с, что почти в 14 раз превышало возможности шины FSB.

18 августа 2008 года была выпущена модификация 3.1, работающая со скоростью 3.2 ГТр/с, с пропускной способностью - 51.6 Гбайт/с. На данный момент это - самая быстрая версия шины HyperTransport.

Технология HyperTransport - очень гибкая, и позволяет варьировать, как частоты шины, так и ее разрядность. Это позволяет использовать ее не только для связи процессора с северным мостом и ОЗУ, но и в медленных устройствах. При этом возможность уменьшения разрядности и частоты ведет к экономии энергии.

Минимальная тактовая частота шины – 200 МГц, при этом данных будут передоваться со скоростью - 400 МТр/с, из-за технологии DDR, а минимальная разрядность - 2 бита. При минимальных параметрах максимальная пропускная способность составит 100 Мбайт/с. Все следующие поддерживаемые частоты и разрядности - кратны минимальной тактовой частоте и разрядности вплоть до скорости - 3.2 ГТр/с, и разрядности - 32 бита, для ревизии HyperTransport v 3.1.

DMI (Direct Media Interface) – последовательная шина типа точка-точка, используемая для связи процессора с чипсетом и для связи южного моста чипсета с северным. Разработана компанией Intel в 2004 году.

Для связи процессора с чипсетом обычно используется 4 канала DMI, обеспечивающих максимальную пропускную способность до 10 Гбайт/с, для ревизии DMI 1.0, и 20 Гбайт/с, для ревизии DMI 2.0, представленной в 2011 году. В бюджетных мобильных системах может использоваться шина с двумя каналами DMI, что в два раза снижает пропускную способность по сравнению с 4-х канальным вариантом.

Часто в процессоры, использующие связь с чипсетом по шине DMI, встраивают, наряду с контроллером памяти, контроллер шины PCI Express, обеспечивающий взаимодействие с видеокартой. В этом случае надобность в северном мосте отпадает, и чипсет выполняет только функции взаимодействия с платами расширения и периферийными устройствами. При такой архитектуре материнской платы не требуется высокоскоростного канала для взаимодействия с процессором, и пропускной способности шины DMI хватает с избытком.

QPI (QuickPath Interconnect) – последовательная шина типа точка-точка, используемая для связи процессоров между собой и с чипсетом. Представлена компанией Intel в 2008 году и используется в HiEnd процессорах типа Xeon, Itanium и Core i7.

Шина QPI - двунаправленная, то есть для обмена в каждую сторону предусмотрен свой канал, каждый из которых состоит из 20 линий связи. Следовательно, каждый канал – 20-разрядный, из которых на полезную нагрузку приходится только 16 разрядов. Работает шина QPI со скоростью - 4.8 и 6.4 ГТр/с, при этом максимальная пропускная способность составляет 19,2 и 25,6 ГБайт/с соответственно.

Мы с вами кратко рассмотрели основные интерфейсы связи процессора с чипсетом. Далее рассмотрим интерфейсы связи Северного моста с графическим адаптером.

3.1.2. Интерфейсы связи с графическим адаптером.

Вначале для связи с графическим процессором использовали общую шину ICA, VLB, а затем PCI, но очень быстро пропускной способности этих шин перестало хватать для работы с графикой, тем более после распространения трехмерной графики, требующей огромных мощностей для расчета и высокой пропускной способности шины для передачи текстур и параметров изображения.

На замену общим шинам пришла специализированная шина AGP, оптимизированная для работы с графическим контроллером.

AGP (Accelerated Graphics Port) – специализированная 32-разрядная шина для работы с графическим адаптером, разработанная в 1997 году компанией Intel.

Шина AGP работала на тактовой частоте - 66 МГц, и поддерживала два режима работы: с памятью DMA (Direct Memory Access) и памятью DME (Direct in Memory Execute).

В режиме DMA основной памятью считалась память, встроенная в видеоадаптер, а в режиме DME – память видеокарты, которые вместе с основной памятью находились в едином адресном пространстве, и видеоадаптер мог обращаться, как к встроенной памяти, так и к основной памяти компьютера.

Наличие режима DME позволяло уменьшить объем встраиваемой в видеоадаптер памяти и тем самым уменьшить его стоимость. Режим работы с памятью DME получил название AGP-текстурирование.

Однако очень скоро пропускной способности шины AGP перестало хватать для работы в режиме DME, и производители стали увеличивать объемы встраиваемой памяти. Вскоре и увеличение встраиваемой памяти перестало помогать и пропускной способности шины AGP стало категорически нехватать.

Первая версия шины AGP – AGP 1x, работала на тактовой частоте – 66 МГц, и имела максимальную скорость передачи данных – 266 Мбайт/с, что было недостаточно для полноценной работы в режиме DME и не превышало скорость предшественницы – шины PCI (PCI 2.1 – 266 Мбайт/с). Поэтому практически сразу же шина была доработана и введен режим передачи данных по фронту и спаду тактового импульса, что при той же тактовой частоте в 66 МГц позволило получить пропускную способность в 533 Мбайт/с. Этот режим назывался AGP 2x.

Первая представленная на рынке ревизия AGP 1.0 поддерживала режимы работы AGP 1x и AGP 2x.

В 1998 году была представлена новая ревизия шины – AGP 2.0, поддерживающая режим работы AGP 4x, в котором за один такт передавалось уже 4 блока данных, в результате, пропускная способность достигла 1 ГБайт/с.

При этом опорная тактовая частота шины не изменилась и осталась равной 66 МГц, а для возможности передачи четырех блоков данных за один такт был введен дополнительный сигнал, запускающийся синхронно с опорной тактовой частотой, но с частотой – 133 МГц. Данные передавались по фронту и спаду тактового импульса дополнительного сигнала.

При этом питающее напряжение было снижено с 3.3 В до 1.5 В, в результате, видеокарты, выпущенные только для ревизии AGP 1.0, были несовместимы с видеокартами AGP 2.0 и следующих ревизий шины AGP.

В 2002 году вышла ревизия 3.0 шины AGP. Опорная частота шины по прежнему осталась неизменной, однако дополнительный тактовый импульс, запускающийся синхронно с опорной частотой, составлял уже 266 МГц. При этом за 1 такт опорной частоты передавалось уже 8 блоков, а максимальная скорость составила 2.1 Гбайт/с.

Но, несмотря на все улучшения шины AGP, видеоадаптеры развивались быстрее и требовали более производительной шины. Так на смену шине AGP пришла шина PCI express.

PCI express – последовательная двунаправленная шина типа точка-точка, разработанная в 2002 некоммерческой группой PCI-SIG, в состав которой входили такие кампании, как Intel, Microsoft, IBM, AMD, Sun Microsystems и другие.

Основная задача, стоящая перед шиной PCI express, – это замена графической шины AGP и параллельной универсальной шины PCI.

Ревизия шины PCI express 1.0 работает на тактовой частоте 2.5 ГГц, при этом пропускная суммарная способность одного канала составляет 400 Мбайт/с, так как на каждые переданные 8 бит данных приходится 2 служебных бита и шина двунаправленная, то есть обмен в обе стороны идет одновременно. В шине обычно используется несколько каналов: 1, 2, 4, 8, 16 или 32, в зависимости от требуемой пропускной способности. Таким образом, шины на базе PCI express в общем случае представляют собой набор самостоятельных последовательных каналов передачи данных.

Так при использовании шины PCI express для связи с видеокартами обычно используется 16-ти канальная шина, а для связи с платами расширения – одноканальная шина.

Теоретическая максимальная суммарная пропускная способность 32-х канальной шины составляет 12.8 Гбайт/с. При этом, в отличие от шины PCI, делившей пропускную способность между всеми подключенными устройствами, шина PCI express построена по принципу топологии типа «звезда» и каждому подключаемому устройству в единоличное владение отдается вся пропускная способность шины.

В ревизии PCI express 2.0, представленной 15 января 2007 года, пропускная способность шины была увеличена в 2 раза. Для одного канала шины суммарная пропускная способность составила 800 Мбайт/с, а для 32-х канальной шины – 25.6 Гбайт/с.

В ревизии PCI express 3.0, представленной в ноябре 2010 года, пропускную способность шины еще в 2 раза увеличили, причем максимальное количество транзакций увеличилось с 5 до 8 млрд, а максимальная пропускная способность увеличилась в 2 раза, благодаря изменению принципа кодирования информации, при котором на каждые 129 бит данных приходится всего 2 служебных бита, что в 13 раз меньше, чем в ревизиях 1.0 и 2.0. Таким образом, для одного канала шины суммарная пропускная способность стала 1.6 Гбайт/с, а для 32-х канальной шины – 51.2 Гбайт/с.

Однако PCI express 3.0 только выходит на рынок и первые материнские платы с поддержкой этой шины начали появляться в конце 2011 года, а массовый выпуск устройств с поддержкой шины PCI express 3.0 запланирован на 2012 год.

Стоит отметить, что на данный момент пропускной способности PCI express 2.0 вполне хватает для нормального функционирования видеоадаптеров и переход на PCI express 3.0 не даст существенного прироста производительности в связке процессор – видеокарта. Но, как говорится, поживем – увидим.

В ближайшем будущем планируется выпуск ревизии PCI express 4.0, в котором скорость будет увеличена еще в 2 раза.

В последнее время наметилась тенденция встраивания интерфейса PCI express непосредственно в процессор. Обычно в таких процессорах также встроен контроллер памяти. В результате, надобность в северном мосте отпадает, и чепсет строят на основе одной интегральной схемы, основная задача которой – обеспечение взаимодействия с платами расширения и периферийными устройствами.

На этом закончим обзор интерфейсов связи северного моста с видео адаптером и перейдем к обзору интерфейсов связи северного моста с южным.

3.1.3. Интерфейсы связи с южным мостом.

Довольно долгое время для связи северного моста с южным использовалась шина PCI.

PCI (Peripheral component interconnect) – шина для подключения плат расширения к материнской плате, разработанная в 1992 году компанией Intel. Также долгое время использовалась для связи северного моста с южным. Однако по мере повышения производительности плат расширения ее пропускной способности стало не хватать. Она была вытеснена более производительными шинами вначале из задач связи северного и южного моста, а в последние годы и для связи с платами расширения стали использовать более быструю шину – PCI express.

Основные технические характеристики шины PCI, следующие:

Ревизия 1.0 2.0 2.1 2.2 2.3
Дата релиза 1992 г. 1993 г. 1995 г. 1998 г. 2002 г.
Разрядность 32 32 32/64 32/64 32/64
Частота 33 МГц 33 МГц 33/66 МГц 33/66 МГц 33/66 МГц
Пропускная способность 132 МБайт/с 132 МБайт/с 132/264/528 МБайт/с 132/264/528 МБайт/с 132/264/528 МБайт/с
Сигнальное напряжение 5 В 5 В 5/3.3 В 5/3.3 В 5/3.3 В
Горячая замена нет нет нет есть есть

Существуют и другие ревизии шин PCI, например, для использования в ноутбуках и других портативных устройствах, или переходные варианты между основными ревизиями, но так как на данный момент интерфейс PCI практически вытеснен более скоростными шинами, то не буду подробно описывать характеристики всех ревизий.

При использовании шины для связи северного и южного моста структурная схема материнской платы будет выглядеть следующим образом:

Как видно из рисунка, северный и южный мост подключались к шине PCI наравне с платами расширения. Припускная способность шины делилась между всеми подключенными к ней устройствами, а, следовательно, заявленная пиковая пропускная способность уменьшалась не только передаваемой служебной информацией, но и конкурирующими устройствами, подключенными к шине. В результате, со временем пропускной способности шины стало нахватать, и для связи между северным и южным мостом стали использовать такие шины, как: hub link, DMI, HyperTransport, а шина PCI еще ненадолго осталась в качестве связи с платами расширения.

Первой на замену PCI пришла шина hub link.

Шина hublink – 8-битная шина типа точка-точка, разработанная компанией Intel. Шина работает на частоте – 66 МГц, и передает 4 байта за такт, что позволяет получить максимальную пропускную способность – 266 Мбайт/сек.

Ввод шины hublink изменил архитектуру материнской платы и разгрузил шину PCI. Шина PCI стала использоваться только для связи с периферийными устройствами и платами расширения, а шина hublink использовалась только для связи с северным мостом.

Пропускная способность шины hublink была сравнима с пропускной способностью шины PCI, но из-за того, что ей не приходилось делить канал с другими устройствами, а шина PCI разгружалась, то пропускной способности было вполне достаточно. Но вычислительная техника не стоит на месте, и шина hublink на данный момент практически не используется, из-за недостаточного быстродействия. Она была вытеснена такими шинами, как DMI и HyperTransport.

Краткое описание шины DMI и HyperTransport приводилось в разделе , поэтому повторяться не буду.

Были и другие интерфейсы для связи северного моста с южным, но большинство из них уже безнадежно устарели или редко используются, поэтому мы не будем на них заострять внимание. На этом закончим обзор основных функций и устройства северного моста и перейдем к южному мосту.

3.2. Основные функции Южного моста.

Южный мост отвечает за организацию взаимодействия с медленными компонентами ЭВМ: платами расширения, периферийными устройствами, устройствами ввода-вывода, каналами межмашинного обмена и так далее.

То есть, Южный мост ретранслирует данные и запросы от подключенных к нему устройств в северный мост, который передает их в процессор или ОЗУ, и принимает от северного моста команды процессора и данные из ОЗУ, и ретранслирует их в подключенные к нему устройства.

В состав южного моста входят:

Контроллер шины связи с северным мостом (PCI, hublink, DMI, HyperTransport и т.д.);

Контроллер шины связи с платами расширения (PCI, PCIe и т.д.);

Контроллер линий связи с периферийными устройствами и другими ЭВМ (USB, FireWire, Ethernet и т.д.);

Контроллер шины связи с жесткими дисками (ATA, SATA, SCSI и т.д.);

Контроллер шины связи с медленными устройствами (шины ISA, LPC, SPI и т.д.).

Рассмотрим более подробно интерфейсы связи, используемые южным мостом, и встроенные в него контроллеры периферийных устройств.

Интерфейсы связи северного моста с южным мы уже рассматривали. Поэтому сразу перейдем к интерфейсам связи с платами расширения.

3.2.1. Интерфейсы связи с платами расширения.

На данный момент основными интерфейсами для обмена с платами расширения являются PCI и PCIexpress. Однако интерфейс PCI активно вытесняется, и в ближайшие несколько лет практически уйдет историю, и будет использоваться только в некоторых специализированных ЭВМ.

Описание и краткие характеристики интерфейсов PCI и PCIexpress я уже приводил в этой статье, так что повторяться не буду. Перейдем сразу к рассмотрению интерфейсов связи с периферийными устройствами, устройствами ввода-вывода и другими ЭВМ.

3.2.2. Интерфейсы связи с периферийными устройствами, устройствами ввода - вывода и другими ЭВМ.

Существует большое разнообразие интерфейсов для связи с периферийными устройствами и другими ЭВМ, наиболее распространенные из них встраиваются в материнскую плату, но также можно добавлять любой из интерфейсов с помощью плат расширения, подключаемых к материнской плате через шину PCI или PCIexpress.

Приведу краткое описание и характеристики наиболее популярных интерфейсов.

USB (Universal Serial Bus) – универсальный последовательный канал передачи данных для подключения к ЭВМ среднескоростных и низкоскоростных периферийных устройств.

Шина строго ориентирована и состоит из контроллера канала и подключаемых к нему нескольких оконечных устройств. Обычно контроллеры канала USB встроены в южный мост материнской платы. В современных материнских платах могут размещаться до 12 контроллеров канала USB с двумя портами каждый.

Соединение между собой двух контроллеров канала или двух оконечных устройств невозможно, поэтому напрямую соединить два компьютера или два периферийных устройства между собой по USB-каналу нельзя.

Однако для связи двух контроллеров канала между собой можно использовать дополнительные устройства. Например, эмулятор Ethernet адаптера. Два компьютера подключаются к нему по USB каналу, и оба видят оконечное устройство. Ethernet адаптер ретранслирует данные, получаемые от одного компьютера к другому, эмулируя сетевой протокол Ethernet. Однако при этом необходимо устанавливать специфические драйвера эмулятора Ethernet адаптера на каждый подключаемый компьютер.

Интерфейс USB имеет встроенные линии питания, благодаря чему позволяет использовать устройства без собственного источника питания или одновременно с обменом данными подзаряжать аккумуляторы оконечных устройств, например телефонов.

Однако, если между контроллером канала и оконечным устройством используется размножитель (USB-hub), то он должен обладать дополнительным внешним питанием, чтобы обеспечить все подключаемые к нему устройства питанием, требуемым по стандарту интерфейса USB. Если использовать USB-hub без дополнительного источника питания, то, при подключении нескольких устройств без собственных источников питания, они, скорее всего, работать не будут.

USB поддерживает «горячее» подключение оконечных устройств. Это возможно, из-за более длинного заземляющего контакта, чем сигнальные контакты. Поэтому, при подключении оконечного устройства, вначале замыкаются контакты заземления, и разность потенциала компьютера и оконечного устройства выравнивается. Следовательно, дальнейшее соединение сигнальных проводников не приводит к скачку напряжения.

На данный момент существует три основные ревизии интерфейса USB (1.0, 2.0 и 3.0). Причем они совместимы снизу-вверх, то есть устройства, предназначенные для ревизии 1.0, будут работать с интерфейсом ревизии 2.0, соответственно, устройства, предназначенные для USB 2.0, будут работать с USB 3.0, однако устройства для USB 3.0, скорее всего не будут работать с интерфейсом USB 2.0.

Рассмотрим основные характеристики интерфейса, в зависимости от ревизии.

USB 1.0 – первая версия интерфейса USB, выпущенная в ноябре 1995 года. В 1998 году ревизия была доработана, устранены ошибки и недочеты. Полученная ревизия USB 1.1 первой получила массовое распространение.

Технические характеристики ревизий 1.0 и 1.1 следующие:

Скорость передачи данных – до 12 Мбит/с (режим Full-Speed) или 1,5 Мбит/с (режим Low-Speed);

Максимальная длина кабеля – 5 метров, для режима Low-Speed, и 3 метра, для режима Full-Speed;

USB 2.0 – ревизия, вышедшая в апреле 2000 года. Основное отличие от предыдущей версии – повышение максимальной скорости передачи данных до 480 Мбит/с. На практике, из-за больших задержек между запросом на передачу данных и началом передачи, скорости в 480 Мбит/с достичь не удается.

Технические характеристики ревизии 2.0 следующие:

Скорость передачи данных – до 480 Мбит/с (Hi-speed), до 12 Мбит/с (режим Full-Speed) или до 1,5 Мбит/с (режим Low-Speed);

Синхронная передача данных (по запросу);

Полудуплексный обмен (одновременно передача возможна только в одном направлении);

Максимальная длина кабеля – 5 метров;

Максимальное количество подключённых устройств к одному контроллеру (включая размножители) – 127;

Возможно подключение устройств, работающих в режимах с различной пропускной способностью, к одному контроллеру USB;

Напряжение питания для периферийных устройств – 5 В;

Максимальная сила тока – 500 мА;

Кабель состоит из четырех линий связи (две линии – для приема и передачи данных, и две линии – для питания периферийных устройств) и заземляющей оплетки.

USB 3.0 – ревизия, вышедшая в ноябре 2008 года. В новой ревизии на порядок была увеличена скорость, до 4800 Мбит/с, и почти в два раза – сила тока, до 900 мА. При этом сильно изменился внешний вид разъемов и кабелей, но совместимость снизу-вверх осталась. Т.е. устройства, работающие с USB 2.0, смогут подключаться к разъему 3.0, и будут работать.

Технические характеристики ревизии 3.0 следующие:

Скорость передачи данных – до 4800 Мбит/с (режим SuperSpeed), до 480 Мбит/с (режим Hi-speed), до 12 Мбит/с (режим Full-Speed) или до 1,5 Мбит/с (режим Low-Speed);

Двухшинная архитектура (шина Low-Speed/Full-Speed/High-Speed и отдельно шина SuperSpeed);

Асинхронная передача данных;

Дуплексный обмен в режиме SuperSpeed (одновременно возможна передача и прием данных) и симплексный в остальных режимах.

Максимальная длина кабеля – 3 метра;

Максимальное количество подключённых устройств к одному контроллеру (включая размножители) – 127;

Напряжение питания для периферийных устройств – 5 В;

Максимальная сила тока – 900 мА;

Улучшенная система управления питанием, позволяющая экономить энергию при бездействии оконечных устройств;

Кабель состоит из восьми линий связи. Четыре линии связи такие же, как и в USB 2.0. Дополнительные две линии связи – для приема данных, и две – для передачи в режиме SuperSpeed, и две –заземляющие оплетки: одна – для кабелей передачи данных в режиме Low-Speed/Full-Speed/High-Speed, и одна – для кабелей, используемых в режиме SuperSpeed.

IEEE 1394 (Institute of Electrical and Electronic Engineers) – стандарт последовательной высокоскоростной шины, принятый в 1995 году. Различные компании называют шины, разработанные по этому стандарту, по-разному. У Apple – FireWire, у Sony – i.LINK, у Yamaha – mLAN, у Texas Instruments – Lynx, у Creative – SB1394, и так далее. Из-за этого часто возникает путаница, но, несмотря на разные названия, это одна и та же шина, работающая по одному стандарту.

Эта шина предназначена для подключения высокоскоростных периферийных устройств, таких как внешние жесткие диски, цифровые видеокамеры, музыкальные синтезаторы и так далее.

Основные технические характеристики шины следующие:

Максимальная скорость передачи данных изменяется от 400 Мбит/с, у ревизии IEEE 1394, до 3.2 Гбит/с, у ревизии IEEE 1394b;

Максимальная длина связи между двумя устройствами изменяется от 4.5 метров, у ревизии IEEE 1394, до 100 метров, у ревизии IEEE 1394b и старше;

Максимальное количеств устройств, последовательно подключаемых к одному контроллеру, – 64, в том числе и IEEE-концентраторы. При этом все подключаемые устройства делят между собой пропускную способность шины. К каждому IEEE-концентратору можно подключить еще 16 устройств. Вместо подключения устройства можно подключить шинную перемычку, через которую можно будет подключить еще 63 устройства. Всего можно подключить до 1023 шинных перемычек, что позволит организовать сеть из 64 449 устройств. Больше устройств подключить нельзя, так как в стандарте IEEE 1394 каждое устройство имеет 16-разрядный адрес;

Возможность объединения в сеть нескольких компьютеров;

Горячее подключение и отключение устройств;

Возможность использования устройств, питающихся от шины и не имеющих собственного источника питания. При этом максимальная сила тока – до 1.5 Ампер, а напряжение – от 8 до 40 Вольт.

Ethernet – стандарт построения компьютерных сетей на базе технологии пакетной передачи данных, разработанный в 1973 году Робертом Метклафом из корпорации Xerox PARC.

Стандарт определяет виды электрических сигналов и правила проводных соединений, описывает форматы кадров и протоколы передачи данных.

Существуют десятки разных ревизий стандарта, но наиболее распространенными на сегодняшний день является группа стандартов: Fast Ethernet и Gigabit Ethernet.

Fast Ethernet обеспечивает передачу данных со скоростью до 100 Мбит/с. И дальность передачи данных в одном сегменте сети без повторителей – от 100 метров (группа стандартов 100BASE-T, использующая для передачи данных витую пару) до 10 километров (группа стандартов 100BASE-FX, использующая для передачи данных одномодовое оптоволокно).

Gigabit Ethernet обеспечивает передачу данных со скоростью до 1 Гбит/с. И дальность передачи данных в одном сегменте сети без повторителей – от 100 метров (группа стандартов 1000BASE-T, использующая для передачи данных четыре витых пары) до 100 километров (группа стандартов 1000BASE-LH, использующая для передачи данных одномодовое оптоволокно).

Для передачи больших объемов информации существуют стандарты десяти, сорока и ста гигабитного Ethernet, работающего на базе оптоволоконных линий связи. Но более подробно об этих стандартах и вообще о технологии Ethernet будет описано в отдельной статье, посвященной межмашинному взаимодействию.

Wi-Fi – беспроводная линия связи, созданная в 1991 году в Нидерландской компанией NCR Corporation/AT&T. WiFi основывается на стандарте IEEE 802.11. и используется, как для связи с периферийными устройствами, так и для организации локальных сетей.

Wi-Fi позволяет соединять два компьютера или компьютер и периферийное устройство напрямую по технологии точка-точка, либо организовывать сеть с использованием точки доступа, к которой одновременно могут подключаться несколько устройств.

Максимальная скорость передачи данных зависит от используемой ревизии стандарта IEEE 802.11, но на практике будет значительно ниже заявленных параметров, из-за накладных расходов, наличия препятствий на пути распространения сигнала, расстояния между источником сигнала и приемником и других факторов. На практике средняя пропускная способность в лучшем случае будет в 2-3 раза меньше заявленной максимальной пропускной способности.

В зависимости от ревизии стандарта пропускная способность Wi-Fi следующая:

Ревизия стандарта Тактовая частота Заявленная максимальная мощность Средняя скорость передачи данных на практике Дальность связи в помещении/открытой местности
802.11a 5 ГГц 54 Мбит/с 18.4 Мбит/с 35/120 м
802.11b 2.4 ГГц 11 Мбит/с 3.2 Мбит/с 38/140 м
802.11g 2.4 ГГц 54 Мбит/с 15.2 Мбит/с 38/140 м
802.11n 2.4 или 5 ГГц 600 Мбит/с 59.2 Мбит/с 70/250 м

Существует множество других интерфейсов для связи с периферийными устройствами и организации локальных сетей. Однако они редко встраиваются в материнскую плату и обычно используются в виде плат расширения. Поэтому эти интерфейсы, наравне с описанными выше, будем рассматривать в статье посвященной межмашинному взаимодействию, а сейчас перейдем к описанию интерфейсов связи южного моста с жесткими дисками.

3.2.3. Интерфейсы шин связи южного моста с жесткими дисками.

Первоначально для связи с жесткими дисками использовался интерфейс ATA, но позже он был вытеснен более удобными и современными интерфейсами SATA и SCSI. Приведем краткий обзор этих интерфейсов.

ATA (Advanced Technology Attachment) или PATA (Parallel ATA) – параллельный интерфейс связи, разработанный в 1986 году компанией Western Digital. В то время он назывался IDE (Integrated Drive Electronics), но позже был переименован в ATA, а с появлением в 2003 году интерфейса SATA, PATA был переименован в PATA.

Использование интерфейса PATA подразумевает, что контроллер жесткого диска располагается не на материнской плате или в виде платы расширения, а встроен в сам жесткий диск. На материнской плате, а именно в южном мосте, располагается только контроллер канала PATA.

Для подключения жёстких дисков с интерфейсом PATA обычно используется 40-проводный шлейф. С введением режима PATA/66 появилась его 80-проводная версия. Максимальная длина шлейфа – 46 см. К одному шлейфу можно подключить и два устройства, при этом одно из них обязательно должно быть ведущим, а другое – ведомым.

Существует несколько ревизий интерфейса PATA, отличающиеся скоростью передачи данных, режимами работы и другими особенностями. Ниже приведены основные ревизии интерфейса PATA.

На практике пропускная способность шины гораздо ниже заявленной теоретической пропускной способности, из-за накладных расходов на организацию протокола обмена и других задержек. К тому же, если к шине подключено два жестких диска, то пропускная способность будет делиться между ними.

В 2003 году на замену интерфейса PATA пришел интерфейс SATA.

SATA (Serial ATA) – последовательный интерфейс связи южного моста с жесткими дисками, разработанный в 2003 году.

При использовании интерфейса SATA каждый накопитель подключается своим кабелем. Причем кабель значительно уже и удобнее кабеля, используемого в интерфейсе PATA, и имеет максимальную длину до 1 метра. Отдельным кабелем на жесткий диск подается питание.

И даже, несмотря на то, что общее количество кабелей увеличивается, по сравнению с интерфейсом PATA, так как каждый накопитель подключается двумя кабелями, свободного места внутри системного блока становится значительно больше. Это приводит к улучшению КПД системы охлаждения, упрощает доступ к различным элементам компьютера, да и выглядит изнутри системный блок более презентабельно.

На данный момент существует три основных ревизии интерфейса SATA. В таблице ниже приведены основные параметры ревизий.

Особняком от этих интерфейсов стоит интерфейс SCSI.

SCSI (Small Computer System Interface) – универсальная шина для подключения высокоскоростных устройств, таких как: жесткие диски, приводы DVD и Blue-Ray, сканеры, принтеры и так далее. Шина обладает высокой пропускной способностью, но сложно устроенная и дорогостоящая. Поэтому в основном применяется в серверах и промышленных вычислительных системах.

Первая ревизия интерфейса была представлена в 1986 году. На данный момент существует около 10 ревизий шины. В таблице ниже приведены основные параметры наиболее популярных ревизий.

Ревизия интерфейса Разрядность Частота передачи данных Макс. пропускная способность Длина кабеля (м) Макс. кол-во устройств Год выхода
SCSI-1 8 бит 5 МГц 40 МБит/с 6 8 1986
SCSI-2 8 бит 10 МГц 80 МБит/с 3 8 1989
SCSI-3 8 бит 20 МГц 160 МБит/с 3 8 1992
Ultra-2 SCSI 8 бит 40 МГц 320 МБит/с 12 8 1997
Ultra-3 SCSI 16 бит 80 МГц 1.25 ГБит/с 12 16 1999
Ultra-320 SCSI 16 бит 160 МГц 2.5 ГБит/с 12 16 2001
Ultra-640 SCSI 16 бит 320 МГц 5 ГБит/с 12 16 2003

Увеличение пропускной способности параллельного интерфейса сопряжено с рядом трудностей и, в первую очередь, это защита от электромагнитных помех. А каждая линия связи является источником электромагнитных помех. Чем больше линий связи будет в параллельной шине, тем больше они будут создавать помех друг для друга. Чем выше частота передачи данных, тем больше электромагнитных помех, и тем сильнее они оказывают влияние на передачу данных.

Кроме этой проблемы есть менее существенные, такие как:

  • сложность и высокая цена производства параллельной шины;
  • проблемы в синхронной передаче данных по всем линиям шины;
  • сложность устройства и высокая цена контроллеров шины;
  • сложность организации полнодуплексного устройства;
  • сложность обеспечения каждого устройства своей шиной и т.д.

В результате, проще отказаться от параллельного интерфейса в пользу последовательного с большей тактовой частотой. При необходимости можно использовать несколько последовательных линий связи, располагающихся дальше друг от друга и защищенных экранирующей оплеткой. Так поступили при переходе от параллельной шины PCI к последовательной PCI express, от PATA к SATA. По тому же пути развития пошла и шина SCSI. Так в 2004 году появился интерфейс SAS.

SAS (Serial Attached SCSI) – последовательная шина типа точка-точка, заменившая параллельную шину SCSI. Для обмена по шине SAS используется командная модель SCSI, но пропускная способность увеличена до 6 Гбит/с (ревизия SAS 2, вышедшая в 2010 году).

В 2012 году планируется выпуск ревизии SAS 3, обладающей пропускной способностью – 12 Гбит/с, однако устройства, поддерживающие эту ревизию, в массовом порядке начнут появляться не раньше 2014 года.

Также не стоит забывать, что шина SCSI была общая, позволяющая подключать до 16 устройств, и все устройства делили между собой пропускную способность шины. А шина SAS использует топологию точка-точка. А, следовательно, каждое устройство подключается своей линией связи и получает всю пропускную способность шины.

Контроллер SCSI и SAS встраивается в материнскую плату редко, так как они достаточно дорогостоящие. Обычно они подключаются, как платы расширения к шине PCI или PCI express.

3.2.4. Интерфейсы связи с медленными компонентами материнской платы.

Для связи с медленными компонентами материнских плат, например, с пользовательским ПЗУ или контроллерами низкоскоростных интерфейсов, используются специализированные шины, такие как: ISA, MCA, LPS и другие.

Шина ISA (Industry Standard Architecture) – 16-разрядная шина, разработанная в 1981 году. ISA работала на тактовой частоте 8 МГц, и обладала пропускной способностью до 8 Мбайт/с. Шина давно устарела и на практике не используется.

Альтернативой шине ISA была шина MCA (Micro Channel Architecture), разработанная в 1987 году компанией Intel. Эта шина была 32-х разрядная с частотой передачи данных – 10 МГц, и пропускной способностью – до 40 Мбит/с. Поддерживала технологию Plug and Play. Однако закрытость шины и жесткая лицензионная политика компании IBM сделали ее непопулярной. На данный момент шина на практике не используется.

Настоящей заменой для ISA стала шина LPC (Low Pin Count), разработанная компанией Intel в 1998 году и используемая по сей день. Работает шина на тактовой частоте – 33,3 МГц, что обеспечивает пропускную способность в 16,67 МБит/с.

Пропускная способность шины совсем небольшая, но для связи с медленными компонентами материнской платы вполне достаточная. С помощью этой шины к южному мосту подключается многофункциональный контроллер (Super I/O), в состав которого входят контроллеры медленных интерфейсов связи и периферийных устройств:

  • параллельного интерфейса;
  • последовательного интерфейса;
  • инфракрасного порта;
  • интерфейса PS/2;
  • накопителя на гибком магнитном диске и других устройств.

Также Шина LPC обеспечивает доступ к BIOS’у, о котором мы поговорим в следующей части нашей статьи.

4. BIOS (Basic Input-Output System).

BIOS (Basic Input-Output System - базовая система ввода-вывода) – это программа, прошитая в постоянное запоминающее устройство (ПЗУ). В нашем случае ПЗУ встроено в материнскую плату, однако своя версия BIOS присутствует почти во всех элементах ЭВМ (в видеокарте, в сетевой карте, дисковых контроллерах и т.д.), да и вообще почти во всем электронном оборудовании (и в принтере, и в видеокамере, и в модеме, и т.д.).

BIOS материнской платы отвечает за проверку работоспособности контроллеров, встроенных в материнскую плату, и большинства устройств, подключенных к ней (процессора, памяти, видеокарты, жестких дисков и т.д.). Происходит проверка при включении питания компьютера в программе Power-On Self Test (POST).

Далее BIOS производит инициализацию контроллеров, встроенных в материнскую плату, и некоторых подключенных к ним устройств, и устанавливает их базовые параметры работы, например, частоту работы системной шины, процессора, контроллера ОЗУ, параметры работы жестких дисков, контроллеров встроенных в материнскую плату и т.д.

Если проверяемые контроллеры и аппаратура исправны и настроены, то BIOS передает управление операционной системе.

Пользователи могут управлять большинством параметров работы BIOS и даже обновлять его.

Обновление BIOS требуется очень редко, если, например, разработчиками обнаружена и устранена принципиальна ошибка в программе инициализации какого-либо из устройств, либо если требуется поддержка нового устройства (например, новой модели процессора). Но, в большинстве случаев, выход нового типа процессора или памяти требует кардинального «абгрейда» компьютера. Скажем за это производителям электроники «спасибо».

Для настройки параметров BIOS предусмотрено специально меню, войти в которое можно, нажав сочетание клавиш, указанное на экране монитора во время проведения тестов POST. Обычно для входа в меню настройки BIOS требуется нажать клавишу DEL.

В этом меню можно установить системное время, параметры работы дисководов и жестких дисков, увеличить (или уменьшить) тактовую частоту процессора, памяти и системной шины, шин связи и настроить другие параметры работы компьютера. Однако тут стоит быть крайне осторожным, так как неправильно установленные параметры могут привести к ошибкам в работе или даже вывести компьютер из строя.

Все настройки BIOS хранятся в энергозависимой памяти CMOS, работающей от батарейки или аккумулятора, установленного на материнской плате. Если батарейка или аккумулятор разрядились, то компьютер может не включиться или работать с ошибками. Например, будет установлено неверное системное время или параметры работы некоторых устройств.

5. Другие элементы материнской платы.

Кроме описанных выше элементов на материнской плате располагается генератор тактовой частоты, состоящий из кварцевого резонатора и тактового генератора. Генератор тактовой частоты состоит из двух частей, так как кварцевый резонатор, не способен генерировать импульсы с частотой, требуемой для работы современных процессоров, памяти и шин, поэтому тактовую частоту, генерируемую кварцевым резонатором, изменяют с помощью тактового генератора, умножающего или делящего исходные частоты для получения требуемой частоты.

Основная задача тактового генератора материнской платы – это формирование высокостабильного периодического сигнала для синхронизации работы элементов ЭВМ.

Частота тактовых импульсов во многом определяет скорость вычислений. Так как на любую операцию, выполняемую процессором, затрачивается определенное количество тактов, то, следовательно, чем выше тактовая частота, тем выше производительность процессора. Естественно, это верно только для процессоров с одинаковой микроархитектурой, так как в процессорах с различной микроархитектурой для выполнения одной и той же последовательности команду может требоваться разное количество тактов.

Генерируемую тактовую частоту можно увеличивать, тем самым, поднимая производительность ЭВМ. Но этот процесс сопряжен с рядом опасностей. Во-первых, при повышении тактовой частотой снижается стабильность работы компонентов ЭВМ, поэтому после любого «разгона» ЭВМ требуется проводить серьезное тестирования для проверки стабильности ее работы.

Также «разгон» может привести к повреждению элементов ЭВМ. Причем выход из строя элементов будет, скорее всего, не мгновенный. Просто может резко сократиться срок службы элементов, эксплуатируемых в условиях, отличных от рекомендуемых.

Кроме тактового генератора на материнской плате располагается множество конденсаторов, обеспечивающих ровный поток напряжения. Дело в том, что потребление энергии элементами ЭВМ, подключенными к материнской плате, может резко изменяться, особенно при приостановке работы и ее возобновлении. Конденсаторы сглаживают такие скачки напряжения, тем самым, повышая стабильность работы и срок службы всех элементов ЭВМ.

Пожалуй, это все основные компоненты современных материнских плат и на этом обзор устройства материнской платы можно закончить.


просмотров